1. [1] S. Homayouni, and M. Roux, "Hyperspectral image Analysis for Material Mapping Using Spectral Matching", presented at the ISPRS Congress, Istanbul, 2004. 2. [2] P. Shippert, "Why Use Hyperspectral Imagery?", Photogrammetric Engineering & Remote Sensing, pp. 377-380, 2004. 3. [3] C.A. Shah, P. Watanachaturaporn, P.K. Varshney, and M.K. Arora, "Some Recent Results on Hyperspectral Image Classification", In 2003 IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, pp. 346- 353, 2003. 4. [4] F.A. Kruse, A.B. Lefkoff, J.W. Boardman, K.B. Heidebrecht, A.T. Shapiro, P.J. Barloon, and A.F.H. Goetz, "The spectral image processing system (SIPS)-interactive visualization and analysis of imaging spectrometer data", Remote Sensing of Environment, Vol. 44, No. 2, pp. 145-163, 1993. [ DOI:10.1016/0034-4257(93)90013-N] 5. [5] E. Unal, A. Mermer, and H.M. Dogan, "Determining major orchard (pistachio, olive, vineyard) areas in Gaziantep Province using remote sensing techniques", presented at the ISPRS Congress, Istanbul, 2004. 6. [6] B. Luc, B. Deronde, P. Kempeneers, W. Debruyn, and S. Provoost, "Optimized Spectral Angle Mapper classification of spatially heterogeneous dynamic dune vegetation, a case study along the Belgian coastline", presented at the 9th International Symposium on Physical Measurements and Signatures in Remote Sensing (ISPMSRS), Beijing, 2005. 7. [7] A. Galal, H. Hassan, and I.F. Imam, "A novel approach for measuring hyperspectral similarity", Applied Soft Computing, Vol. 12, No. 10, pp. 3115-3123, 2012. [ DOI:10.1016/j.asoc.2012.06.018] 8. [8] K. Wang, X. Gu, T. Yu, Q. Meng, L. Zhao, and L. Feng, "Classification of hyperspectral remote sensing images using frequency spectrum similarity", Science China Technological Sciences, Vol. 56, No. 4, pp. 980-988, 2013. [ DOI:10.1007/s11431-013-5151-3] 9. [9] K. Wang, B. Yong, X. Gu, P. Xiao, and X. Zhang, "Spectral Similarity Measure Using Frequency Spectrum for Hyperspectral Image Classification", IEEE Geoscience and Remote Sensing Letters, Vol. 12, No. 1, pp. 130-134, 2015. [ DOI:10.1109/LGRS.2014.2329183] 10. [10] K. Wang, and B. Yong, "Application of the Frequency Spectrum to Spectral Similarity Measures", Remote Sensing, Vol. 8, No. 4, pp. 344-368, 2016. [ DOI:10.3390/rs8040344] 11. [11] Y. Du, C.-I. Chang, H. Ren, C.-C. Chang, J.O. Jensen, and F.M. D'Amico, "New hyperspectral discrimination measure for spectral characterization", Optical Engineering, Vol. 43, No. 8, pp. 1777-1786, 2004. [ DOI:10.1117/1.1766301] 12. [12] J.R. Jensen, Introductory Digital Image Processing: A Remote Sensing Perspective. Upper Saddle River (New Jersey): Prentice Hall, 1996. 13. [13] C.-I. Chang, Hyperspectral Imaging: Techniques for spectral Detection and Classification. New York: Springer US, 2003. 14. [14] S. Padma, and S. Sanjeevi, "Jeffries Matusita based mixed-measure for improved spectral matching in hyperspectral image analysis", International Journal of Applied Earth Observation and Geoinformation, Vol. 32, pp. 138-151, 2014. [ DOI:10.1016/j.jag.2014.04.001] 15. [15] J.G. Ding, X.B. Li, and L.Q. Huang, "A Novel Method for Spectral Similarity Measure by Fusing Shape and Amplitude Features", Journal of Engineering Science and Technology Review, Vol. 8, No. 5, pp. 172-179, 2015. [ DOI:10.25103/jestr.085.22] 16. [16] R.N. Adep, A.P. Vijayan, A. Shetty, and H. Ramesh, "Performance evaluation of hyperspectral classification algorithms on AVIRIS mineral data", Perspectives in Science, Vol. 8, pp. 722-726, 2016. [ DOI:10.1016/j.pisc.2016.06.070] 17. [17] F. van der Meer, "The effectiveness of spectral similarity measures for the analysis of hyperspectral imagery", International Journal of Applied Earth Observation and Geoinformation, Vol. 8, No. 1, pp. 3-17, 2006. [ DOI:10.1016/j.jag.2005.06.001]
|