[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
:: دوره 7، شماره 4 - ( 12-1398 ) ::
جلد 7 شماره 4 صفحات 77-99 برگشت به فهرست نسخه ها
ارائه یک الگوریتم ترکیبی مبتنی بر یادگیری عمیق و ماشین بولتزمان محدود با هدف قطعه‌بندی معنایی خودرو از تصاویر مادون‌قرمز حرارتی پهپاد
مهدی خوش برش ماسوله، رضا شاه حسینی
دانشگاه تهران
چکیده:   (151 مشاهده)
امروزه پایش وسایل نقلیه زمینی با استفاده از روش‌های پردازش تصویر، یکی از حیطه‌های کاربردی در کنترل ترافیک هوشمند به شمار می‌آید. در این زمینه، به‌کارگیری تصاویر مادون‌قرمز حرارتی پهپاد به دلیل قدرت تفکیک مکانی مناسب، مقرون ‌به ‌صرفه بودن و حجم کمتر تصاویر، یکی از گزینه‌های مطلوب برای هدف پایش وسایل نقلیه است. روش‌هایی که تا به حال برای استخراج وسایل نقلیه از تصاویر حرارتی ارائه شده‌اند، اغلب دارای مشکلاتی نظیر دقت پایین در شناسایی و قطعه‌بندی (مانند روش HOG+SVM) و نیاز به کلان داده‌های آموزشی (مانند روش‌های یادگیری عمیق) است. در تحقیق حاضر، یک مدل جدید با نام SegRBM-Net بر اساس یادگیری عمیق و ماشین بولتزمان محدود ارائه شده است. از جمله ویژگی‌های مدل SegRBM-Net، افزایش دقت شناسایی و قطعه‌بندی وسایل نقلیه از تصاویر حرارتی با استفاده توأم از لایه‌های کانوولوشنی و ویژگی‌های ماشین بولتزمان محدود گوسین - برنولی می‌باشد. این ساختار موجب شده است تا الگوریتم، هدف را با سرعت و دقت بیشتری نسبت به سایر روش‌های یادگیری عمیق پیدا کند. به‌منظور ارزیابی کارایی و دقت روش پیشنهادی، از چهار مجموعه داده مادون‌قرمز حرارتی پهپاد با ویژگی‌هایی نظیر تراکم بالای وسایل نقلیه در صحنه و زاویه دید متنوع استفاده شده است. بر اساس نتایج این تحقیق، مدل SegRBM-Net با دقت میانگین 99 درصد و بهبود سرعت پردازش، نسبت به روش‌های مشابه دارای کارایی مناسبی می‌باشد.
واژه‌های کلیدی: شبکه عصبی کانوولوشنی عمیق، ماشین بولتزمان محدود گوسین - برنولی، قطعه‌بندی معنایی، وسایل نقلیه زمینی، تصاویر مادون‌قرمز حرارتی پهپاد.
متن کامل [PDF 1859 kb]   (49 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: سنجش از دور
دریافت: 1397/9/24 | پذیرش: 1398/3/25 | انتشار: 1398/12/29
فهرست منابع
1. [1] M. Gähler, "Remote sensing for natural or man-made disasters and environmental changes," Environ. Appl. Remote Sens., Jun. 2016. [DOI:10.5772/62183]
2. [2] J. R. B. Fisher, E. A. Acosta, P. J. Dennedy-Frank, T. Kroeger, and T. M. Boucher, "Impact of satellite imagery spatial resolution on land use classification accuracy and modeled water quality," Remote Sens. Ecol. Conserv., vol. 4, no. 2, pp. 137-149, 2017. [DOI:10.1002/rse2.61]
3. [3] A. Nassar, K. Amer, R. ElHakim, and M. ElHelw, "A deep CNN-based framework for enhanced aerial imagery registration with applications to UAV geolocalization," in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Jun. 2018. [DOI:10.1109/CVPRW.2018.00201]
4. [4] N. Ammour, H. Alhichri, Y. Bazi, B. Benjdira, N. Alajlan, and M. Zuair, "Deep learning approach for car detection in UAV imagery," Remote Sens., vol. 9, no. 4, p. 312, Mar. 2017. [DOI:10.3390/rs9040312]
5. [5] G. V. Konoplich, E. O. Putin, and A. A. Filchenkov, "Application of deep learning to the problem of vehicle detection in UAV images," in 2016 XIX IEEE International Conference on Soft Computing and Measurements (SCM), St. Petersburg, Russia, 2016, pp. 4-6. [DOI:10.1109/SCM.2016.7519666]
6. [6] L. Mou and X. X. Zhu, "Vehicle instance segmentation from aerial image and video using a multitask learning residual fully convolutional network," IEEE Trans. Geosci. and Remote Sens., vol. 56, no. 11, pp. 6699-6711, Nov. 2018. [DOI:10.1109/TGRS.2018.2841808]
7. [7] V. Badrinarayanan, A. Kendall, and R. Cipolla, "SegNet: A deep convolutional encoder-decoder architecture for image segmentation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 12, pp. 2481-2495, Dec. 2017. [DOI:10.1109/TPAMI.2016.2644615]
8. [8] J. Lee, J. Wang, D. Crandall, S. Sabanovic, and G. Fox, "Real-time, cloud-based object detection for unmanned aerial vehicles," in 2017 First IEEE International Conference on Robotic Computing (IRC), Taichung, Taiwan, 2017, pp. 36-43. [DOI:10.1109/IRC.2017.77]
9. [9] D. Wu, Y. Zhang, Y. Chen, and S. Zhong, "Vehicle detection in high-resolution images using superpixel segmentation and CNN iteration strategy," IEEE Geosci. and Remote Sens. Letters, vol. 16, no. 1, pp. 105-109, Jan. 2019. [DOI:10.1109/LGRS.2018.2866816]
10. [10] B. Kellenberger, D. Marcos, and D. Tuia, "Detecting mammals in UAV images: Best practices to address a substantially imbalanced dataset with deep learning," Remote Sens. Environ., vol. 216, pp. 139-153, Oct. 2018. [DOI:10.1016/j.rse.2018.06.028]
11. [11] J. E. Ball, D. T. Anderson, and C. S. Chan, "A comprehensive survey of deep learning in remote sensing: theories, tools and challenges for the community," J. Appl. Remote Sens., vol. 11, no. 04, p. 1, Sep. 2017. [DOI:10.1117/1.JRS.11.042609]
12. [12] X. Liu, T. Yang, and J. Li, "Real-Time Ground vehicle detection in aerial infrared imagery based on convolutional neural network," Electronics, vol. 7, no. 6, p. 78, May 2018. Available online: https://pan.baidu.com/s/1d0BMIwp1EUFC4eievhInmw#list/path=%2F [DOI:10.3390/electronics7060078]
13. [13] X. X. Zhu, D. Tuia, L. Mou, G.-S. Xia, L. Zhang, F. Xu, and F. Fraundorfer, "Deep learning in remote sensing: A comprehensive review and list of resources," IEEE Geosci. Remote Sens. Mag., vol. 5, no. 4, pp. 8-36, Dec. 2017. [DOI:10.1109/MGRS.2017.2762307]
14. [14] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You Only Look Once: unified, real-time object detection," in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 779-788. [DOI:10.1109/CVPR.2016.91]
15. [15] Z. Sun, G. Bebis, and R. Miller, "On-road vehicle detection using Gabor filters and support vector machines," 2002 14th Int. Conf. Digit. Signal Process. Proc. DSP 2002 Cat No02TH8628.
16. [16] Luo-Wei Tsai, L.-W. Tsai, J.-W. Hsieh, and K.-C. Fan, "Vehicle detection using normalized color and edge map," IEEE Int. Conf. Image Process. 2005, 2005. [DOI:10.1109/ICIP.2005.1530126]
17. [17] X. Chen and Q. Meng, "Vehicle detection from UAVs by using SIFT with implicit shape model," in 2013 IEEE International Conference on Systems, Man, and Cybernetics, 2013, pp. 3139-3144. [DOI:10.1109/SMC.2013.535]
18. [18] Y. Xu, G. Yu, Y. Wang, X. Wu, and Y. Ma, "A hybrid vehicle detection method based on Viola-Jones and HOG+SVM from uav images," Sensors, vol. 16, no. 8, p. 1325, 2016. [DOI:10.3390/s16081325]
19. [19] S. Kamal and A. Jalal, "A hybrid feature extraction approach for human detection, tracking and activity recognition using depth sensors," Arab. J. Sci. Eng., vol. 41, no. 3, pp. 1043-1051, 2015. [DOI:10.1007/s13369-015-1955-8]
20. [20] W. Shao, W. Yang, G. Liu, and J. Liu, "Car detection from high-resolution aerial imagery using multiple features," 2012 IEEE Int. Geosci. Remote Sens. Symp., 2012. [DOI:10.1109/IGARSS.2012.6350403]
21. [21] Z. Chen, C. Wang, H. Luo, H. Wang, Y. Chen, C. Wen, Y. Yu, L. Cao, and J. Li "Vehicle detection in high-resolution aerial images based on fast sparse representation classification and multiorder feature," IEEE Trans. Intell. Transp. Syst., vol. 17, no. 8, pp. 2296-2309, 2016. [DOI:10.1109/TITS.2016.2517826]
22. [22] S. L. Yu, T. Westfechtel, R. Hamada, K. Ohno, and S. Tadokoro, "Vehicle detection and localization on bird's eye view elevation images using convolutional neural network," 2017 IEEE Int. Symp. Saf. Secur. Rescue Robot. SSRR, 2017.
23. [23] K. Bittner, S. Cui, and P. Reinartz, "Building extraction from remote sensing data using fully convolutional networks," ISPRS - Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., vol. XLII-1/W1, pp. 481-486, May 2017. [DOI:10.5194/isprs-archives-XLII-1-W1-481-2017]
24. [24] E. Maggiori, Y. Tarabalka, G. Charpiat, and P. Alliez, "Convolutional neural networks for large-scale remote-sensing image classification," IEEE Trans. Geosci. Remote Sens., vol. 55, no. 2, pp. 645-657, Feb. 2017. [DOI:10.1109/TGRS.2016.2612821]
25. [25] G. Fu, C. Liu, R. Zhou, T. Sun, and Q. Zhang, "Classification for high resolution remote sensing imagery using a fully convolutional network," Remote Sens., vol. 9, no. 5, p. 498, May 2017. [DOI:10.3390/rs9050498]
26. [26] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," 2016 IEEE Conf. Comput. Vis. Pattern Recognit. CVPR, 2016. [DOI:10.1109/CVPR.2016.90]
27. [27] O. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation," Lect. Notes Comput. Sci. Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinforma., vol. 9351, pp. 234-241, 2015. [DOI:10.1007/978-3-319-24574-4_28]
28. [28] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, 1998. [DOI:10.1109/5.726791]
29. [29] E. Shelhamer, J. Long, and T. Darrell, "Fully convolutional networks for semantic segmentation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 4, pp. 640-651, Apr. 2017. [DOI:10.1109/TPAMI.2016.2572683]
30. [30] F. Chollet, Deep learning with Python. Shelter Island, New York: Manning Publications Co, 2018.
31. [31] Y. Long, Y. Gong, Z. Xiao, and Q. Liu, "Accurate object localization in remote sensing images based on convolutional neural networks," IEEE Trans. Geosci. Remote Sens., vol. 55, no. 5, pp. 2486-2498, May 2017. [DOI:10.1109/TGRS.2016.2645610]
32. [32] K. Chen, K. Fu, X. Gao, M. Yan, X. Sun, and H. Zhang, "Building extraction from remote sensing images with deep learning in a supervised manner," in 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, 2017, pp. 1672-1675. [DOI:10.1109/IGARSS.2017.8127295]
33. [33] M. K. Masouleh and R. Shah-Hosseini, "Fusion of deep learning with adaptive bilateral filter for building outline extraction from remote sensing imagery," J. Appl. Remote Sens., vol. 12, no. 04, p. 1, Nov. 2018. [DOI:10.1117/1.JRS.12.046018]
34. [34] N. Audebert, A. Boulch, H. Randrianarivo, B. Le Saux, M. Ferecatu, S. Lefevre, and R. Marlet, "Deep learning for urban remote sensing," in 2017 Joint Urban Remote Sensing Event (JURSE), Dubai, United Arab Emirates, 2017, pp. 1-4. [DOI:10.1109/JURSE.2017.7924536]
35. [35] R. Salakhutdinov and H. Larochelle, "Efficient learning of deep Boltzmann machines," in Proceeding of the Thirteenth International Conference on Artificial Intelligence and Statistics, p. 8, 2010.
36. [36] Y. Sakai and K. Yamanishi, "Data fusion using Restricted Boltzmann machines," 2014 IEEE Int. Conf. Data Min., 2014. [DOI:10.1109/ICDM.2014.70]
37. [37] S. Keronen, K. Cho, T. Raiko, A. Ilin, and K. Palomaki, "Gaussian-Bernoulli restricted Boltzmann machines and automatic feature extraction for noise robust missing data mask estimation," 2013 IEEE Int. Conf. Acoust. Speech Signal Process., 2013. [DOI:10.1109/ICASSP.2013.6638964]
38. [38] Z. Li, X. Cai, and T. Liang, "Gaussian-Bernoulli based convolutional restricted Boltzmann machine for images feature extraction," Lecture Notes in Computer Science, pp. 593-602, 2016. [DOI:10.1007/978-3-319-46672-9_66]
39. [39] H. Zhang, S. Zhang, K. Li, and D. N. Metaxas, "Robust shape prior modeling based on Gaussian-Bernoulli restricted Boltzmann Machine," 2014 IEEE 11th Int. Symp. Biomed. Imaging ISBI, 2014. [DOI:10.1109/ISBI.2014.6867861]
40. [40] Y. Qiao, Z. Wei, and Y. Zhao, "Thermal Infrared Pedestrian Image Segmentation Using Level Set Method," Sensors, vol. 17, no. 8, p. 1811, Aug. 2017. [DOI:10.3390/s17081811]
41. [41] "Tau 2 Longwave Infrared Thermal Camera Core | FLIR Systems." [Online]. Available: https://www.flir.com/products/tau-2/. [Accessed: 05-Dec-2018].
42. [42] M. S. Jadin and S. Taib, "Infrared image enhancement and segmentation for extracting the thermal anomalies in electrical equipment," Electron. Electr. Eng., vol. 120, no. 4, Apr. 2012. [DOI:10.5755/j01.eee.120.4.1465]
43. [43] VE_UAV_TIR_Data.Available online: https://1drv.ms/u/s!Aj2qsxlPUOabbVHUH9J4E0s1yFE
ارسال پیام به نویسنده مسئول


XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khoshboresh Masouleh M, Shah Hosseini R. A Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images. jgit. 2020; 7 (4) :77-99
URL: http://jgit.kntu.ac.ir/article-1-764-fa.html

خوش برش ماسوله مهدی، شاه حسینی رضا. ارائه یک الگوریتم ترکیبی مبتنی بر یادگیری عمیق و ماشین بولتزمان محدود با هدف قطعه‌بندی معنایی خودرو از تصاویر مادون‌قرمز حرارتی پهپاد. مهندسی فناوری اطلاعات مکانی. 1398; 7 (4) :77-99

URL: http://jgit.kntu.ac.ir/article-1-764-fa.html



دوره 7، شماره 4 - ( 12-1398 ) برگشت به فهرست نسخه ها
نشریه علمی-پژوهشی مهندسی فناوری اطلاعات مکانی Engineering Journal of Geospatial Information Technology
Persian site map - English site map - Created in 0.06 seconds with 31 queries by YEKTAWEB 4130