[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
داوران::
ثبت نام و اشتراک::
تماس با ما::
تسهیلات پایگاه::
بایگانی مقالات زیر چاپ::
آمار نشریه::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
آمار سایت
مقالات منتشر شده: 326
نرخ پذیرش: 63.2
نرخ رد: 36.8
میانگین داوری: 208 روز
میانگین انتشار: 344 روز
..
:: دوره 7، شماره 4 - ( 12-1398 ) ::
جلد 7 شماره 4 صفحات 156-139 برگشت به فهرست نسخه ها
ارائه رویکرد نوین SVM-CRF برای طبقه‌بندی ابر نقاط لیدار هوایی در محیط شهری
فرزانه عقیقی ، حسین عقیقی* ، امید مهدی عبادتی
دانشگاه شهید بهشتی
چکیده:   (3449 مشاهده)
طی دهه ­های گذشته، رشد شهری به عنوان یک پدیده­ جهانی شناخته شده است که شامل روند گسترده شدن و الگوی گسترش است. همان‌طور که شهرها به سرعت در حال تغییر هستند، می­توان به­منظور تجزیه و تحلیل کمّی آن­ها و همچنین تصمیم­گیری در برنامه­ریزی شهری از مزایای مدل­های دیجیتالی دوبعدی و سه­بعدی استفاده کرد. پیشرفت­های اخیر در تصویربرداری و تکنولوژی­های حسگر غیر تصویربردار مانند سیستم تشخیص و ردیابی نور (لیدار) هوایی، منجر به ایجاد مقدار زیادی داده­­های سنجش از دوری شده است که می­تواند برای تولید مدل­های دو­بعدی و سه­بعدی به­کار گرفته شود. هدف از این مقاله ارائه­ رویکرد نوین SVM-CRF برای طبقه­بندی مجموعه داده ابر نقاط لیدار و تصویر و مقایسه کارآیی این رویکرد نسبت به دیگر رویکردهای موجود از جمله رویکردهای گرافیکی احتمالاتی است. لازم به ذکر است که در این مقاله از SA به عنوان بهینه ساز SVM-CRF استفاده شد. برای ارزیابی قابلیت رویکرد مورد استفاده در این مقاله از مجموعه داده­ مرجع ISPRS که برای شهر وایهینگن و به منظور طبقه­بندی شهری و بازسازی ساختمان سه­بعدی تولید شده است؛ استفاده شد. همچنین نتایج تحقیق قبلی نویسنده مقاله پیش­رو که رویکرد  SVM-MRFرا معرفی کرده بود در کنار دیگر تحقیقاتی که از روش CRF و مجموعه داده مشابه استفاده کرده­اند، برای مقایسه بهتر نتایج آورده شده است. نتایج این تحقیق نشان می­دهد که عملکرد روش SVM-CRF با دقت کلی 06/89 درصد و ضریب کاپا 84/0 درصد از سایر رویکردهای طبقه­بندی به کار رفته روی مجموعه داده­ مشابه بهتر است.
واژه‌های کلیدی: ابر نقاط لیدار، طبقه‌بندی، میدان شرطی تصادفی، یادگیری ماشین، ویژگی‌های شهر.
متن کامل [PDF 1619 kb]   (1418 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: فتوگرامتری
دریافت: 1397/9/28 | پذیرش: 1398/7/16 | انتشار: 1398/12/29
فهرست منابع
1. [1] M. Akhavan Abdollahian, M. Taghvaei, H. Varesi, "Determining Vulnerable Applications and Criteria for Spatial Locating With Emphasis on Unnatural Crises with AHP Method (Case Study: Sabzevar)". Geores. 32(1), 121-136, 2017. [DOI:10.18869/acadpub.geores.32.1.121]
2. [2] H. Olfat, A. Rajabifard, F.M. Qureshi, S.A. Daneshpour, "Facilitating Urban Management Through Local SDI case study: the Municipality of Tehran", In GSDI 11 World Conference , Rotterdam, The Netherlands, 2009.
3. [3] M.E. Hodgson, J.R. Jensen, J.A. Tullis, K.D. Riordan, and C.M. Archer, "Synergistic Use of Lidar and Color Aerial Photography for Mapping Urban Parcel Imperviousness", American Society for Photogrammetry and Remote Sensing, 2003. [DOI:10.14358/PERS.69.9.973]
4. [4] G. Zhou, C. Song, J. Simmers, and P. Cheng, "Urban 3D GIS from LiDAR and digital aerial images", Computers & Geosciences 30.4: 345-353, 2004. [DOI:10.1016/j.cageo.2003.08.012]
5. [5] G. Maximilien, J. Digne, R. Chaine, and G. Monnier, "Fine scale image registration in large-scale urban LIDAR point sets", Computer Vision and Image Understanding 157: 90-102, 2017. [DOI:10.1016/j.cviu.2016.12.004]
6. [6] M.J. Starek, Light Detection and Ranging (LIDAR), Encyclopedia of Estuaries: 383-384, 2016. [DOI:10.1007/978-94-017-8801-4_244]
7. [7] P.M. Dare, "Shadow analysis in high-resolution satellite imagery of urban areas", Photogrammetric Engineering & Remote Sensing 71.2: 169-177, 2005. [DOI:10.14358/PERS.71.2.169]
8. [8] D. Poli and C. Ivano, "3D modeling of large urban areas with stereo VHR satellite imagery: lessons learned", Natural hazards 68.1: 53-78, 2013. [DOI:10.1007/s11069-013-0583-4]
9. [9] B. Hojabri, F. Samadzadegan, H. Arefi, "Building Reconstruction Based on the Data Fusion of Lidar Point Cloud and Aerial Imagery", JGST, 2014; 3(4):103-130.
10. [10] L. Guo, N. Chehata, C. Mallet, S. Boukir, "Relevance of airborne lidar and multispectral image data for urban scene classification using Random Forests", ISPRS Journal of Photogrammetry and Remote Sensing, 66 (1), 56-66, 2011. [DOI:10.1016/j.isprsjprs.2010.08.007]
11. [11] J. Niemeyer, F. Rottensteiner, U. Soergel, "Contextual classification of LiDAR data and building object detection in urban area". ISPRS J. Photogramm. Remote Sens, 87, 152-165. [CrossRef], 2014. [DOI:10.1016/j.isprsjprs.2013.11.001]
12. [12] N.E. Ashmawy, A. Shaker, W. Yan, "PIXEL VS OBJECT-BASED IMAGE CLASSIFICATION TECHNIQUES FOR LIDAR INTENSITY DATA", International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVIII-5/W12, 2011ISPRS Calgary 2011 Workshop, 29-31 August 2011, Calgary, Canada. [DOI:10.5194/isprsarchives-XXXVIII-5-W12-43-2011]
13. [13] Y.A. Hussin, V.P. Atmopawiro, "SUB-PIXEL AND MAXIMUM LIKELIHOOD CLASSIFICATION OF LANDSAT ETM+ IMAGES FOR DETECTING ILLEGAL LOGGING AND MAPPING TROPICAL RAIN FOREST COVER TYPES IN BERAU, EAST KALIMANTAN, INDONESIA", International Society for Photogrammetry and Remote Sensing (ISPRS), 182-191, 2004.
14. [14] K. L.K. Rajendran, S.P.M. Bane, P.P. Vlachos, "Dot-Tracking Methodology for Background Oriented Schliern (BOS)", arXiv preprint arXiv:1812.10870, 28 Dec 2018 - arxiv.org. [DOI:10.1007/s00348-019-2793-3]
15. [15] A. Balke, P. Kohli, C. Rother, "Markov random fields for vision and image processing", 463 pages, 2011. [DOI:10.7551/mitpress/8579.001.0001]
16. [16] P.M. Mather, "Computer Processing of Remotely-Sensed Images: An Introduction", 3rd Edition, 2005.
17. [17] R.G. Congalton, "A review of assessing the accuracy of classifications of remotely sensed data", Remote sensing of environment 37.1: 35-46, 1991. [DOI:10.1016/0034-4257(91)90048-B]
18. [18] H. Aghighi, J. Trinder, Y. Tarabalka, S. Lim, "Dynamic Block-Based Parameter Estimation for MRF Classification of High-Resolution Images", Geoscience and Remote Sensing Letters, 11(10), 1687-1691, 2014. [DOI:10.1109/LGRS.2014.2305913]
19. [19] M. Weinmann, B. Jutzi, C. Mallet, "Sematic 3D scene interpretation: A framework combining optimal neighborhood size selection with relevant features", In Proceeding of the Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Zurich, Switzerland, 2, 181-188, 5-7 September 2014. [DOI:10.5194/isprsannals-II-3-181-2014]
20. [20] S. Paisitkriangkrai, J. Sherrah, P. Janney, A. Hengel, "Effective semantic pixel labelling with convolutional networks and conditional random fields", In Proceedings of the Conference on Computer Vision and Pattern Recognition Workshops (CVPR), Boston, MA, USA, 36-43, 7-12 June 2015. [DOI:10.1109/CVPRW.2015.7301381]
21. [21] L.C. Chen, G. Papandreou, I. Kokkinos, K.L. Murphy, A.L. Yuille, "Semantic image segmentation with deep convolutional nets and fully connected crfs", In Proceedings of the 3rd International Conference on Learning Representations (ICLR2015), San Diego, CA, USA, 7-9 May 2015.
22. [22] S. Chen, "Markov models for image labeling, Mathematical Problems in Engineering", 44(1), 2011. [DOI:10.1155/2012/814356]
23. [23] J. Niemeyer, F. Rottensteiner, U. Soergel, "Conditional random fields for lidar point cloud classification in complex urban areas, ISPRS annals of the photogrammetry", remote sensing and spatial information sciences, 1(3), 263-268, 2012. [DOI:10.5194/isprsannals-I-3-263-2012]
24. [24] J. Niemeyer, L.D. Wegner, C. Mallet, F. Rottensteiner, U. Soergel, "Conditional Random Fields for Urban Scene Classication with Full Waveform LiDAR Data", Springer, Berlin, Heidelberg, 2011. [DOI:10.1007/978-3-642-24393-6_20]
25. [25] J. Niemeyer, C. Mallet, F. Rottensteiner, U. Soergel, "CONDITIONAL RANDOM FIELDS FOR THE CLASSIFICATION OF LIDAR POINT CLOUDS", International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVIII-4/W19, ISPRS Hannover 2011 Workshop, Hannover, Germany, 14-17 June 2011. [DOI:10.5194/isprsarchives-XXXVIII-4-W19-209-2011]
26. [26] W.L. Lu, K.P. Murphy, J.J. Little, A. Sheffer, and H. Fu, "A hybrid conditional random field for estimating the underlying ground surface from airborne lidar data", IEEE Transactions on Geoscience and Remote Sensing 47.8: 2913-2922, 2009. [DOI:10.1109/TGRS.2009.2017738]
27. [27] X. Han, H. Wang, J. Lu, C. Zhao, "Road detection based on the fusion of Lidar and image data", International Journal of Advanced Robotic Systems, 14(6), 2017. [DOI:10.1177/1729881417738102]
28. [28] Z. Huang, F. Xu, H. Nie, "Object-based Conditional Random Fields for Road Extraction from Remote Sensing Image", IOP Conference Series: Earth and Environmental Science, 2014. [DOI:10.1088/1755-1315/17/1/012276]
29. [29] X. Pan, L. Gao, A. Marinoni, B. Zhang, F. Yang, P. Gamba, "Semantic Labeling of High Resolution Aerial Imagery and LiDAR Data with Fine Segmentation Network", Remote Sens, 10, 743, 2018. [DOI:10.3390/rs10050743]
30. [30] J. Niemeyer, F. Rottensteiner, U. Soergel, "Conditional random fields for lidar point cloud classification in complex urban areas", ISPRS annals of the photogrammetry, Urban Remote Sensing Event (JURSE), 2013 Joint, Conference Location: Sao Paulo, Brazil, 2013.
31. [31] F. Aghighi, O.M. Ebadati E., H. Aghighi, "Classification of LiDAR cloud points by using Markov Random Field and machine learning techniques", Iranian Journal of Remote Sencing & GIS, ISSN 2008-5966, 2(34), 60-41, 2017.
32. [32] U. B. Gewali, S.T. Monteiro, "A Tutorial on Modeling and Inference in Undirected Graphical Models for Hyperspectral Image Analysis", International Journal of remote Sensing, volume: abs/1801.08268, 2018. [DOI:10.1080/01431161.2018.1465614]
33. [33] V. Jain J.F. Murray, F. Roth, S. Turaga, V. Zhigulin, K.L. Briggman, M.N. Helmstaedter, W. Denk, H. Sebastian Seung, "Supervised Learning of Image Restoration with Convolutional Networks", 2007 IEEE 11th International Conference on Computer Vision, 2007. [DOI:10.1109/ICCV.2007.4408909]
34. [34] S. Laible, Y.N. Khan, A. Zell, "Terrain Classification With Conditional Random Fields on fields on fused 3d lidar and camera data", Conference: Conference: Mobile Robots (ECMR), 2013 European Conference on, 2013. [DOI:10.1109/ECMR.2013.6698838]
35. [35] E. Grilli, F. Menna, F. Remondino, "a Review of Point Clouds Segmentation and Classification Algorithms", ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 339-344, 2017. [DOI:10.5194/isprs-archives-XLII-2-W3-339-2017]
36. [36] J.M.D. Balakrishnan, "Significance of classification techniques in prediction of learning disabilities", arXiv preprint arXiv: 1011.0628, 2010.
37. [37] J. Lafferty, A. McCallum, F.C.N. Pereira, "Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data", Department of Computer & Information Science, 2001.
38. [38] S. Kumar, M. Hebert, "Discriminative random fields: A discriminative framework for contextual interaction in classification", 2003.
39. [39] A. Nguyen, B. Le, "3D point cloud segmentation: A survey", Robotics, Automation and Mechatronics (RAM), 2013 6th IEEE Conference on, 2013. [DOI:10.1109/RAM.2013.6758588]
40. [40] T. Hoberg, F. Rottensteiner, C. Heipke, "CONTEXT MODELS FOR CRF-BASED CLASSIFICATION OF MULTITEMPORAL REMOTE SENSING DATA", ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-7, 2010. [DOI:10.1109/PRRS.2010.5742800]
41. [41] B.E. Boser, I.M. Guyon, V.N. Vapnik, "A training algorithm for optimal margin classifiers", Proceeding of the 5th Annual ACM Workshop on Computational Learning Theory, 1839 - 44 self, 1992. [DOI:10.1145/130385.130401]
42. [42] Y. Pao, "Adaptive pattern recognition and neural networks", 1989.
43. [43] C.C. Chang, C.J. Lin, "LIBSVM: a library for support vector machines", ACM Transactions on Intelligent Systems and Technology (TIST), 2(3), 27, 2011. [DOI:10.1145/1961189.1961199]
44. [44] L.P. Knerr, G. Dreyfus, "Single-layer learning revisited: a stepwise procedure for building and training a neural network", J.Fogelman, editor, Neurocomputing: Algorithms, Architecture and application. Spring-Verlag, 1990. [DOI:10.1007/978-3-642-76153-9_5]
45. [45] C. Wellington and A. Stentz, "Learning predictions of the load-bearing surface for autonomous rough-terrain navigation in vegetation", Field and Service Robotics, Springer Berlin Heidelberg, 2003.
46. [46] H. Hu, D. Munoz, J.A. Bagnell, M. Hebert, "Efficient 3-d scene analysis from streaming data", Robotics and Automation (ICRA), 2013 IEEE International Conference on. IEEE, 2013.
47. [47] M. Cramer, "The DGPF-test on digital airborne camera evaluation-overview and test design", Photogrammetrie-Fernerkundung-Geoinformation, 2, 73-82, 2010. [DOI:10.1127/1432-8364/2010/0041]
48. [48] V. Spreckels, L.S. YREK , L.S. SCHLIENKAMP, Herne, "DGPF-Project: Evaluation of Digital Photogrammetric Camera Systems-Stereoplotting", Photogrammetrie-Fernerkundung-Geoinformation, 2, 117-130, 2010. [DOI:10.1127/1432-8364/2010/0044]
49. [49] R. Abdolla, "Evaluation of spatial analysis application for urban emergency management", SpringerPlus, 5:2081, 2016. [DOI:10.1186/s40064-016-3723-y]
50. [50] M. Azadbakht, C. Fraser, K. Khoshelham, "Improved Urban Scene Classification Using Full-Waveform Lidar", Photogrammetric Engineering & Remote Sensing, 82(12), 973-980, 2016. [DOI:10.14358/PERS.82.12.973]
51. [51] C. Mallet, F. Bretar, M. Roux, U. Soergel, C. Heipke, "Relevance assessment of full-waveform lidar data for urban area classification", ISPRS Journal of Photogrammetry and Remote Sensing, 66(6), S71-S84, 2011. [DOI:10.1016/j.isprsjprs.2011.09.008]
52. [52] S. Arekhi, M. Adibnejad, "Efficiency assessment of the of Support Vector Machines for land use classification using Landsat ETM+ data (Case study: Ilam Dam Catchment)", Iranian journal of range and desert research, 18(44), P. 420:440, 2011.
53. [53] G.M. Foody, "Thematic map comparison", Photogrammetric Engineering & Remote Sensing, 70(5), 627-633, 2004. [DOI:10.14358/PERS.70.5.627]
ارسال پیام به نویسنده مسئول



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Aghighi F, Aghighi H, Ebadati O M. Conditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area. jgit 2020; 7 (4) :139-156
URL: http://jgit.kntu.ac.ir/article-1-767-fa.html

عقیقی فرزانه، عقیقی حسین، عبادتی امید مهدی. ارائه رویکرد نوین SVM-CRF برای طبقه‌بندی ابر نقاط لیدار هوایی در محیط شهری. مهندسی فناوری اطلاعات مکانی. 1398; 7 (4) :139-156

URL: http://jgit.kntu.ac.ir/article-1-767-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 7، شماره 4 - ( 12-1398 ) برگشت به فهرست نسخه ها
نشریه علمی-پژوهشی مهندسی فناوری اطلاعات مکانی Engineering Journal of Geospatial Information Technology
Persian site map - English site map - Created in 0.06 seconds with 38 queries by YEKTAWEB 4660