1. [1] P. Vanicek, R. O. Castle, and E. I. Balazs, "Geodetic Levelling and its Applications", Reviews of Geophysics and Space Physics, vol. 18, pp. 505-524, 1980. [ DOI:10.1029/RG018i002p00505] 2. [2] O. B. Anderson, P. Knudsen, "Global Marine Gravity Field from the ERS-1 and Geosat Geodetic Mission Altimetry", Journal of Geophysical Research, vol. 103, pp. 8129-8137, 1998. [ DOI:10.1029/97JC02198] 3. [3] W. Freeden, M. Z. Nashed, and M. Schreiner, Spherical Sampling. Germany: Springer, 2018. [ DOI:10.1007/978-3-319-71458-5] 4. [4] W. Freeden, M. Gutting, Applied and Numerical Harmonic Analysis. Germany: Springer, 2013. 5. [5] W. Freeden, M. Gutting, Integration and Cubature Methods: A Geomathematically Oriented Course. New York: Chapman & Hall(Taylor & Francis Group), 2018. [ DOI:10.1201/9781315195674] 6. [6] W. Freeden, On the Permanence Property in Spherical Spline Interpolation. Ohio: The Ohio State University, 1982. [ DOI:10.21236/ADA126263] 7. [7] W. Freeden, T. Gervens, M. Schreiner, Constructive Approximation on the Sphere. England: Oxford University Press, 1998. 8. [8] W. Freeden, Spherical Spline Interpolation: Basic Theory and Computational Aspects. Germany: Institut Fur Reine Und Angewandte Mathematik, 1984. [ DOI:10.1016/0377-0427(84)90011-6] 9. [9] W. Freeden, Spherical Functions of Mathematical Geosciences. Germany: Springer, 2009. [ DOI:10.1007/978-3-540-85112-7] 10. [10] W. Freeden, "On Spherical Spline Interpolation and Approximation", Mathematical Methods in the Applied Sciences. vol. 3, pp.551-575, 1981. [ DOI:10.1002/mma.1670030139] 11. [11] G. Wahba, "Spline Interpolation and smoothing on the sphere", Society for Industrial and Applied Mathematics, vol. 2, pp.1-10, 1981. [ DOI:10.1137/0902002] 12. [12] G. Wahba, "Spline Models for Observational Data", presented at the Regional Conference in Applied Mathematics, Pennsylvania, 1990. [ DOI:10.1137/1.9781611970128] 13. [13] N. Akhtar, V. Michel, "Reproducing-kernel-based Splines for the Regularization of the Inverse Ellipsoidal Gravimetric Problem", Applicable Analysis, vol. 91, pp.2105-2132, 2012. [ DOI:10.1080/00036811.2011.590479] 14. [14] A. Safari, M. A. Sharifi, H. Amin I. Foroughi, "Gravity acceleration at the sea surface derived from satellite altimetry data using harmonic splines", Journal of the Earth and Space Physics, vol. 40, pp.35-46, 2014. 15. [15] V. Baramidze, M. J. Lai, and C. K. Shum, "Spherical Splines for Data Interpolation and Fitting", Society for Industrial and Applied Mathematics, vol. 28, pp.1-19, 2006. [ DOI:10.1137/040620722] 16. [16] E. Kreyszig, Introductory Functional Analysis with Applications. New York: John Wiley and sons, 1978. 17. [17] M. D. Greenberg, Application of Green's Functions in Science and Engineering. New York: Prentice Hall, 2015. 18. [18] L. B. Felsen, N. Marcuritz, Radiation and Scattering of Waves. New York: John Wiley & Sons, 1994. [ DOI:10.1109/9780470546307] 19. [19] M. Kiani, N. Chegini, A. Safari, B. Nazari, "Spheroidal Spline Interpolation", under review. 20. [20] R. Szmytkowski "Closed Form of the Generalized Green's Function for the Helmholtz Operator on the Two Dimensional Unit Sphere", Journal of Mathematical Physics, vol. 47, pp.303-321, 2006. [ DOI:10.1063/1.2203430] 21. [21] M. C. Kim, B. D. Tapely, and C. K. Shum, "Mean Sea surface model", presented at the Center for space research, Pasadena(California), 1995. 22. [22] R. H. Rapp "The Development of a Degree 360 Expansion of the Dynamic Ocean Topography of the POCM-4B Global Circulation Model", presented at the NASA/CR-1998-206877 Goddard Space Flight Center, Greenbelt MD, 1998. 23. [23] C. Forste, F. Flechhtner, R. Schmidt, U. Meyer, R. Stubenvoll, F. Barthelmes, R. Konig, K. H. Neumayer, M. Rothacher, C. H. Reigber, R. Biancale, S. Bruinsma, J. M. Lemoine, J. C. Raimondo "A new high resolution global gravity model derived from combination of GRACE and CHAMP mission and altimetry-gravimetry surface gravity data", presented at the EGU General Assembly, Vienna (Austria), 2005. 24. [24] C. Jekeli "The exact transformation between ellipsoidal and spherical harmonic expansions", Manuscripta geodaetica, vol. 13, pp.106-113, 1988. 25. [25] N. Chegini and R. Stevenson" Adaptive wavelet schemes for parabolic problems: sparse matrices and numerical results",SIAM journal on numerical analysis, vol 49, pp. 182-212, 2011. [ DOI:10.1137/100800555] 26. [26] N. Chegini and R. Stevenson "An adaptive wavelet method for semi-linear first-order system least squares", Computational methods in applied mathematics, vol. 15, pp. 439-468, 2015. [ DOI:10.1515/cmam-2015-0023] 27. [27] O. A. Oleinik, A. S. Shamaev, and G. A. Usifian," Mathematical Problems in Elasticity and Homoge -nization", Holland: Elsevier Science Publishers, 1992. 28. [28] M. Kiani shahvandi, Earth's Gravity Field Modelling Using Spheroidal Spline, Ms.c thesis, School of Surveying and Geospatial Engineering, University of Tehran.
|