1. [1] X.-H. Le, H. V. Ho, G. Lee, and S. Jung, "Application of long short-term memory (LSTM) neural network for flood forecasting," Water, vol. 11, p. 1387, 2019. [ DOI:10.3390/w11071387] 2. [2] J. F. Rosser, D. Leibovici, and M. Jackson, "(2017) Rapid flood inundation mapping using social media, remote sensing and topographic data. Natural Hazards. ISSN 1573-0840." [ DOI:10.1007/s11069-017-2755-0] 3. [3] J. Teng, J. Vaze, D. Dutta, and S. Marvanek, "Rapid inundation modelling in large floodplains using LiDAR DEM," Water Resources Management, vol. 29, pp. 2619-2636, 2015. [ DOI:10.1007/s11269-015-0960-8] 4. [4] S. Ebadi aghdam, M. Saghebian, " Flood risk zoning using GIS and hierarchical analysis process (Case study: Sarandchai watershed) ", Proceedings of the Second Conference on Tactics of Architecture, Urban Planning, Civil Engineering and Geography in Sustainable Development, 2019. 5. [5] R. P. Deshmukh and A. Ghatol, "Short term flood forecasting using recurrent neural networks a comparative study," International Journal of Engineering and Technology, vol. 2, p. 430, 2010. [ DOI:10.7763/IJET.2010.V2.160] 6. [6] J. Alcazar, A. Palau, and C. Vega-Garcı, "A neural net model for environmental flow estimation at the Ebro River Basin, Spain," Journal of hydrology, vol. 349, pp. 44-55, 2008. [ DOI:10.1016/j.jhydrol.2007.10.024] 7. [7] M. Tayyab, J. Zhou, X. Zeng, and R. Adnan, "Discharge forecasting by applying artificial neural networks at the Jinsha river basin, China," European Scientific Journal, vol. 12, pp. 108-127, 2016. [ DOI:10.19044/esj.2016.v12n9p108] 8. [8] Z. Han, J. Zhao, H. Leung, K. F. Ma, and W. Wang, "A review of deep learning models for time series prediction," IEEE Sensors Journal, 2019. 9. [9] M. Farnaghi, H. Rahimi, "Spatio-Temporal Prediction of Monthly Rainfall using Deep Neural Network: A Case Study in North-west Iran" , Journal of Geomatics Ecience and Technology, 2017 10. [10] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural computation, vol. 9, pp. 1735-1780, 1997. [ DOI:10.1162/neco.1997.9.8.1735] 11. [11] C. Liang, H. Li, M. Lei, and Q. Du, "Dongting lake water level forecast and its relationship with the three gorges dam based on a long short-term memory network," Water, vol. 10, p. 1389, 2018. [ DOI:10.3390/w10101389] 12. [12] C. Hu, Q. Wu, H. Li, S. Jian, N. Li, and Z. Lou, "Deep learning with a long short-term memory networks approach for rainfall-runoff simulation," Water, vol. 10, p. 1543, 2018. [ DOI:10.3390/w10111543] 13. [13] S. Gao, Y. Huang, S. Zhang, J. Han, G. Wang, M. Zhang, et al., "Short-term runoff prediction with GRU and LSTM networks without requiring time step optimization during sample generation," Journal of Hydrology, vol. 589, p. 125188, 2020. [ DOI:10.1016/j.jhydrol.2020.125188] 14. [14] P. Ahmadi, H. Arefi, N. Kardan, "Modeling the discharge of Karun River Using a New Method Based on the Joint LSTM and GRU Neural Networks," , Eco Hydrology, 7, 2020. 15. [15] A. Kiani, F. FarnoodAhmadi, H. Ebadi, "Developing an interpretation system for high-resolution remotely sensed images based on hybrid decision-making process in a multi-scale manner," Journal of the Indian Society of Remote Sensing vol. 48, pp. 197-214, 2019. [ DOI:10.1007/s12524-019-01069-4] 16. [16] Y. Bengio, P. Simard, and P. Frasconi, "Learning long-term dependencies with gradient descent is difficult," IEEE transactions on neural networks, vol. 5, pp. 157-166, 1994. [ DOI:10.1109/72.279181] 17. [17] R. S. Govindaraju, "Artificial neural networks in hydrology. II: hydrologic applications," Journal of Hydrologic Engineering, vol. 5, pp. 124-137, 2000. [ DOI:10.1061/(ASCE)1084-0699(2000)5:2(124)] 18. [18] P. J. Werbos, "Generalization of backpropagation with application to a recurrent gas market model," Neural networks, vol. 1, pp. 339-356, 1988. [ DOI:10.1016/0893-6080(88)90007-X] 19. [19] S. Hochreiter, "The vanishing gradient problem during learning recurrent neural nets and problem solutions," International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 6, pp. 107-116, 1998. [ DOI:10.1142/S0218488598000094] 20. [20] J. Sanyal and X. Lu, "Application of remote sensing in flood management with special reference to monsoon Asia: a review," Natural Hazards, vol. 33, pp. 283-301, 2004. [ DOI:10.1023/B:NHAZ.0000037035.65105.95] 21. [21] C. Cao, P. Xu, Y. Wang, J. Chen, L. Zheng, and C. Niu, "Flash flood hazard susceptibility mapping using frequency ratio and statistical index methods in coalmine subsidence areas," Sustainability, vol. 8, p. 948, 2016. [ DOI:10.3390/su8090948] 22. [22] Y. Sudriani, I. Ridwansyah, and H. A. Rustini, "Long short term memory (LSTM) recurrent neural network (RNN) for discharge level prediction and forecast in Cimandiri river, Indonesia," in IOP Conference Series: Earth and Environmental Science, 2019, p. 012037. [ DOI:10.1088/1755-1315/299/1/012037] 23. [23] H. Apaydin, H. Feizi, M. T. Sattari, M. S. Colak, S. Shamshirband, and K.-W. Chau, "Comparative Analysis of Recurrent Neural Network Architectures for Reservoir Inflow Forecasting," Water, vol. 12, p. 1500, 2020. [ DOI:10.3390/w12051500]
|