1. [1] J. D. Lowell, J. M. Guilbert, "Lateral and vertical alteration-mineralization zoning in porphyry ore deposits". Economic Geology, 65 (4), 373-408,1970. [ DOI:10.2113/gsecongeo.65.4.373] 2. [2] H. Ranjbar, M. Honarmand & Z. Moezifar, "Application of the Crosta technique for porphyry copper alteration mapping, using ETM data in the southern part of the Iranian volcanic sedimentary belt". Journal of Asian Earth Sciences, 24: 237-243, 2004. [ DOI:10.1016/j.jseaes.2003.11.001] 3. [3] M. H. Tangestani, N. Mazhari, B. Agar, F. Moore, "Evaluating Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data for alteration zone enhancement in a semiarid area, northern Shahr-e-Babak, SE Iran". International Journal of Remote Sensing . 29: 2833-2850, 2008. [ DOI:10.1080/01431160701422239] 4. [4] M. H. Tangestani, "Abundance and spatial distribution of clay minerals fraction detected using sub-pixel classification data mining Esther Abade independence". Journal of Economic Geology, Volume 2, Issue 1, Pages 39-49, 2010. 5. [5] S. Salati, "Lithological mapping and fuzzy set theory: Automated extraction of lithological boundary from ASTER imagery by template matching and spatial accuracy assessment". International Journal of Applied Earth Observation and Geoinformation 13, 753-765, 2011. [ DOI:10.1016/j.jag.2011.05.004] 6. [6] A. Beiranvand Pour, H. Mazlan, "The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits", Ore Geology Reviews 44, 1-9,2012. [ DOI:10.1016/j.oregeorev.2011.09.009] 7. [7] S. S. Matar and A.O. Bamousa, "Integration of the ASTER thermal infra-red bands imageries with geological map of Jabal Al Hasir area, Asir Terrane, the Arabian Shield". Journal of Taibah University for Science, 7 (1), 1-7. doi:10.1016/j.jtusci.2013.01.001. 2013. [ DOI:10.1016/j.jtusci.2013.01.001] 8. [8] H. Moghaddam, M. Oskouei, H. Zekri, "Application of Hyperion data to classify ASTER image for mineral detection in Lahroud, Iran". Iranian Journal of Mining Engineering, 9(25), 97-108, 2015. 9. [9] F. D. Boissieua, B. Sevinb, T. Cudahyc, M. Mangeasa, S. Chevreld, C. Ongc, A. Rodgerc, P. Maurizotb, C. Laukampc, I. Lauc, T. Touraivanee, D. Cluzele, M. Despinoy, "Regolith-geology mapping with support vector machine: A case study over weathered Ni-bearing peridotites, New Caledonia". Int. J. Appl. Earth Observ.Geoinform, 64, 377-385, 2017. [ DOI:10.1016/j.jag.2017.05.012] 10. [10] M. Keykhay-Hosseinpoor, A. H. Kohsari, A. Hossein-Morshedy, A. Porwal, "A machine learning-based approach to exploration targeting of porphyry Cu-Au deposits in the Dehsalm district, eastern Iran". Ore Geology Reviews, 116(2020): 103234, 2020. [ DOI:10.1016/j.oregeorev.2019.103234] 11. [11] S. D. Khan, K. Mahmood, "The application of remote sensing techniques to the study of ophiolites". Earth-Science Reviews, 89, 135-143, 2008. [ DOI:10.1016/j.earscirev.2008.04.004] 12. [12] S. Yousefifar, B. Rashidi, "Introducing Dali Cu-Au deposit as the first type of diorite porphyry deposit in central Iran". 34th International Geological Congress,2009. 13. [13] B. K. Bhadra, S. Pathak, G. Karunakar, "ASTER Data Analysis for Mineral Potential Mapping Around Sawar-Malpura Area, Central Rajasthan". J Indian Soc Remote Sens 41, 391-404, 2013. [ DOI:10.1007/s12524-012-0237-0] 14. [14] M. Hosseinjani Zadeha, M. H. Tangestani, F. V. Roldan, I. Yustac, "Spectral characteristics of minerals in alteration zones associated with porphyry copper deposits in the middle part of Kerman copper belt, SE Iran". Ore Geology Reviews, 62, 191-198, 2014. [ DOI:10.1016/j.oregeorev.2014.03.013] 15. [15] M. Hosseinjani Zadeh, M. Honarmand, "A remote sensingbased discrimination of high- and low-potential mineralization for porphyry copper deposits; a case study from Dehaj-Sarduiyeh copper belt, SE Iran". European Journal of Remote Sensing, 50:1, 332-342, 2017. [ DOI:10.1080/22797254.2017.1328646] 16. [16] A. B. Pour, M. Hashim, "Application of Landsat-8 and ALOS-2 data for structural and landslide hazard mapping in Kelantan, Malaysia, Nat". Hazards Earth Syst, Sci, 17, 1285-1303, 2017. [ DOI:10.5194/nhess-17-1285-2017] 17. [17] H. Fereydooni, S. Mojeddifar, "A directed matched filtering algorithm (DMF) for discriminating hydrothermal alteration zones using the ASTER remote sensing data". International Journal of Applied Earth Observation and Geoinformation, 61, 1-13, 2017. [ DOI:10.1016/j.jag.2017.04.010] 18. [18] A. Shirazi, A. Shirazy, J. Karami, "Remote Sensing to Identify Copper Alterations and Promising Regions, Sarbishe, South Khorasan, Iran". International Journal of Geology and Earth Sciences, 4, 36-52, 2018. 19. [19] N. Rani, T. Singh, V.R. Mandla, "Mapping hydrothermal alteration zone through aster data in Gadag Schist Belt of Western Dharwar Craton of Karnataka, India". Environ Earth Sci 79, 526, 2020. [ DOI:10.1007/s12665-020-09269-9] 20. [20] S. L. Phung, and A. Bouzerdoum, "MATLAB Library for Convolutional Neural Networks, Technical Report‖". Visual and Audio Signal Processing Lab, University of Wollongong, 2009. 21. [21] Y. LeCun, Y. Bengio, and G. Hinton, "Deeplearning". Nature, vol. 521, pp. 436-444,2015. [ DOI:10.1038/nature14539] 22. [22] S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift", arXiv preprint arXiv:1502.03167,2015. 23. [23] S. Wager, S. Wang, and P. S. Liang, "Dropout training as adaptive regularization", Advances in neural information processing systems, pp. 351-359, 2013.
|