[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
داوران::
ثبت نام و اشتراک::
تماس با ما::
تسهیلات پایگاه::
بایگانی مقالات زیر چاپ::
آمار نشریه::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
آمار سایت
مقالات منتشر شده: 308
نرخ پذیرش: 62.8
نرخ رد: 37.2
میانگین داوری: 209 روز
میانگین انتشار: 344 روز
..
:: دوره 9، شماره 4 - ( 12-1400 ) ::
جلد 9 شماره 4 صفحات 107-87 برگشت به فهرست نسخه ها
بهبود نقشه‌های جهانی مدل تجربی IRI2016 با تلفیق مشاهدات GPS و Swarm
صدیقه کریمی ، محمدعلی شریفی* ، سعید فرزانه
دانشگاه تهران
چکیده:   (1655 مشاهده)
این مقاله مدلی برای بهبود نقشه‌های محتوای  الکترون کلی قائم (VTEC) مدل مرجع بین‌المللی یونوسفر 2016 (IRI) با استفاده از تلفیق مشاهدات Swarm با مشاهدات سیستم تعیین موقعیت جهانی (GPS) ارائه می‌دهد. مدل ارائه شده از دو بخش مدل زمینه و تصحیحات تشکیل شده است. در این مقاله مدل IRI2016 به عنوان مدل زمینه انتخاب گردید و بخش تصحیحات با استفاده از توابع بسط هارمونیک‌های کروی تا درجه و مرتبه 15 در سیستم مختصات خورشید-ثابت (Sun-fixed) مدل‌سازی شده است. در ترکیب مشاهدات VTEC به دست آمده از Swarm و GPS، بایاس‌های سیستماتیک ماهواره‌های Swarm به عنوان ترم‌های ثابت مجهول در هر اپک زمانی  در نظر گرفته شده‌اند. علاوه بر این، برای در نظر گرفتن سطوح مختلف دقت گروه‌های مشاهداتی، از روش برآورد مولفه واریانس هلمرت استفاده شده است. جهت ارزیابی مدل پیشنهادی، نقشه‌های جهانی یونوسفری (GIM) ترکیبی دو بعدی در 28 سپتامبر 2017 و 3 ژانویه 2018 به ترتیب با ضرایب Kp (شاخص فعالیت خورشیدی) 7 و 1 ساخته شده‌اند. مقایسه نقشه‌های GIM ترکیبی به دست آمده با نقشه‌های GIM حاصل از خدمات بین‌المللی سیستم‌های ماهواره‌ای ناوبری جهانی (IGS)، نشان می‌دهد که مدل ترکیبی سازگاری بیشتری با نقشه‌های IGS دارد و افزودن مشاهدات Swarm و GPS به مدل زمینه IRI2016، می‌تواند تا حد زیادی مدل IRI2016 را به ویژه در مناطق اقیانوسی بهبود بخشد. نتایج نشان می‌دهد نقشه‌های جذر میانگین مربعات (RMS) و خطای جذر میانگین مربعات (RMSE) به ترتیب، حدود 19 الی 45 درصد و 43 الی 67 درصد برای روز با ضریب Kp بالا و حدود 13 الی 40 درصد و 15 الی 43 درصد برای روز با ضریب Kp پایین کاهش یافته‌اند.
واژه‌های کلیدی: محتوای کل الکترون، Swarm، GPS، مدل IRI-2016، برآورد مولفه واریانس
متن کامل [PDF 2570 kb]   (550 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: ژئودزی (عمومی)
دریافت: 1400/8/28 | پذیرش: 1400/12/4 | انتشار الکترونیک پیش از انتشار نهایی: 1400/12/4 | انتشار: 1400/12/16
فهرست منابع
1. [1] N. Blaunstein, and E. Plohotniuc," Ionosphere and applied aspects of radio communication and radar ", CRC press, 2008. [DOI:10.1201/9781420055177]
2. [2] B. Hofmann-Wellenhof, H. Lichtenegger, and E. Wasle," GNSS-global navigation satellite systems: GPS, GLONASS, Galileo, and more",Springer Science & Business Media, 2007.
3. [3] J. S. Subirana, J. J. Zornoza, and M. Hernández-Pajares," Gnss data processing. volume 1: Fundamentals and algorithms", ESA Communications ESTEC, PO Box, vol. 299, p. 2200, 2013.
4. [4] K. Su, S. Jin, and M. M. Hoque," Evaluation of ionospheric delay effects on multi-GNSS positioning performance", Remote Sensing, vol. 11, no. 2, p. 171, 2019. [DOI:10.3390/rs11020171]
5. [5] L. Liu, and Y. Chen," Statistical analysis on the solar activity variations of the TEC derived at JPL from global GPS observations", J. Geophys. Res, vol. 114, p. A10311, 2009. [DOI:10.1029/2009JA014533]
6. [6] O. Maltseva, N. Mozhaeva, O. Poltavsky, and G. Zhbankov," Use of TEC global maps and the IRI model to study ionospheric response to geomagnetic disturbances", Advances in Space Research, vol. 49, no. 6, pp. 1076-1087, 2012. [DOI:10.1016/j.asr.2012.01.005]
7. [7] N. Dashora, and S. Suresh," Characteristics of low‐latitude TEC during solar cycles 23 and 24 using global ionospheric maps (GIMs) over Indian sector", Journal of Geophysical Research: Space Physics, vol. 120, no. 6, pp. 5176-5193, 2015. [DOI:10.1002/2014JA020559]
8. [8] S. Jin, R. Jin, and H. Kutoglu," Positive and negative ionospheric responses to the March 2015 geomagnetic storm from BDS observations", Journal of Geodesy, vol. 91, no. 6, pp. 613-626, 2017. [DOI:10.1007/s00190-016-0988-4]
9. [9] C. Gao, S. Jin, and L. Yuan," Ionospheric Responses to the June 2015 Geomagnetic Storm from Ground and LEO GNSS Observations", Remote Sensing, vol. 12, no. 14, p. 2200, 2020. [DOI:10.3390/rs12142200]
10. [10] M. Karki, et al. ," GPS Observations of Ionospheric TEC Variations during 2015 Mw 7.8 Nepal Earthquake", Earth and Space Science Open Archive ESSOAr, 2020. [DOI:10.1002/essoar.10504866.1]
11. [11] R. W. Schunk et al. ," Global assimilation of ionospheric measurements (GAIM) ", Radio Science, vol. 39, no. 1, 2004. [DOI:10.1029/2002RS002794]
12. [12] J. Ping et al. ," Regional ionosphere map over Japanese Islands", Earth, planets and space, vol. 54, no. 12, pp. e13-e16, 2002. [DOI:10.1186/BF03352450]
13. [13] M. Schmidt," Wavelet modelling in support of IRI", Advances in Space Research, vol. 39, no. 5, pp. 932-940, 2007. [DOI:10.1016/j.asr.2006.09.030]
14. [14] M. Schmidt, D. Dettmering, M. Mößmer, Y. Wang, and J. Zhang," Comparison of spherical harmonic and B spline models for the vertical total electron content", Radio Science, vol. 46, no. 6, 2011. [DOI:10.1029/2010RS004609]
15. [15] E. Erdogan, M. Schmidt, F. Seitz, and M. Durmaz," Near real-time estimation of ionosphere vertical total electron content from GNSS satellites using B-splines in a Kalman filter", in Annales Geophysicae, 2017, vol. 35, no. 2: Copernicus GmbH, pp. 263-277. [DOI:10.5194/angeo-35-263-2017]
16. [16] D. Bilitza," International reference ionosphere 2000", Radio Science, vol. 36, no. 2, pp. 261-275, 2001. [DOI:10.1029/2000RS002432]
17. [17] J. A. Klobuchar," Ionospheric time-delay algorithm for single-frequency GPS users", IEEE Transactions on aerospace and electronic systems, no. 3, pp. 325-331, 1987. [DOI:10.1109/TAES.1987.310829]
18. [18] S. Kumar, E. L. Tan, and D. S. Murti," Impacts of solar activity on performance of the IRI-2012 model predictions from low to mid latitudes", Earth, Planets and Space, vol. 67, no. 1, pp. 1-17, 2015. [DOI:10.1186/s40623-015-0205-3]
19. [19] P. Bhuyan, and R. R. Borah," TEC derived from GPS network in India and comparison with the IRI", Advances in Space Research, vol. 39, no. 5, pp. 830-840, 2007. [DOI:10.1016/j.asr.2006.12.042]
20. [20] P. Coisson, S. Radicella, L. Ciraolo, R. Leitinger, and B. Nava," Global validation of IRI TEC for high and medium solar activity conditions", Advances in space research, vol. 42, no. 4, pp. 770-775, 2008. [DOI:10.1016/j.asr.2007.09.002]
21. [21] O. Olwendo, P. Baki, P. Cilliers, C. Mito, and P. Doherty," Comparison of GPS TEC variations with IRI-2007 TEC prediction at equatorial latitudes during a low solar activity (2009-2011) phase over the Kenyan region", Advances in Space Research, vol. 52, no. 10, pp. 1770-1779, 2013. [DOI:10.1016/j.asr.2012.08.001]
22. [22] X. Wang, Q. Wan, T. Maruyama, G. Ma, J. Li, and J. Fan," Comparison of global TEC between IRI TEC and GPS TEC in the spring of 2006", in 2017 XXXIInd General Assembly and Scientific Symposium of the International :union: of Radio Science (URSI GASS), 2017: IEEE, pp. 1-3. [DOI:10.23919/URSIGASS.2017.8105295]
23. [23] C. Shi, T. Zhang, C. Wang, Z. Wang, and L. Fan," Comparison of IRI-2016 model with IGS VTEC maps during low and high solar activity period", Results in Physics, vol. 12, pp. 555-561, 2019. [DOI:10.1016/j.rinp.2018.12.022]
24. [24] S. Rao, M. Chakraborty, S. Kumar, and A. Singh," Low-latitude ionospheric response from GPS, IRI and TIE-GCM TEC to Solar Cycle 24", Astrophysics and Space Science, vol. 364, no. 12, pp. 1-14, 2019. [DOI:10.1007/s10509-019-3701-2]
25. [25] S. Todorova, T. Hobiger, and H. Schuh," Using the global navigation satellite system and satellite altimetry for combined global ionosphere maps", Advances in Space Research, vol. 42, no. 4, pp. 727-736, 2008. [DOI:10.1016/j.asr.2007.08.024]
26. [26] M. Alizadeh, H. Schuh, S. Todorova, and M. Schmidt," Global ionosphere maps of VTEC from GNSS, satellite altimetry, and Formosat-3/COSMIC data", Journal of Geodesy, vol. 85, no. 12, pp. 975-987, 2011. [DOI:10.1007/s00190-011-0449-z]
27. [27] P. Chen, W. Yao, and X. Zhu," Combination of ground-and space-based data to establish a global ionospheric grid model", IEEE Transactions on Geoscience and Remote Sensing, vol. 53, no. 2, pp. 1073-1081, 2014. [DOI:10.1109/TGRS.2014.2333522]
28. [28] P. Chen, Y. Yao, and W. Yao," Global ionosphere maps based on GNSS, satellite altimetry, radio occultation and DORIS", GPS solutions, vol. 21, no. 2, pp. 639-650, 2017. [DOI:10.1007/s10291-016-0554-9]
29. [29] Y. Yao, L. Liu, J. Kong, and C. Zhai," Global ionospheric modeling based on multi-GNSS, satellite altimetry, and Formosat-3/COSMIC data", GPS Solutions, vol. 22, no. 4, pp. 1-12, 2018. [DOI:10.1007/s10291-018-0770-6]
30. [30] W. Liang, M. Limberger, M. Schmidt, D. Dettmering, and U. Hugentobler," Combination of ground-and space-based GPS data for the determination of a multi-scale regional 4-D ionosphere model", in IAG 150 Years: Springer, 2015, pp. 751-758. [DOI:10.1007/1345_2015_25]
31. [31] S. Todorova," Combination of space geodetic techniques for global mapping of the ionosphere", 2008.
32. [32] C. Brunini, A. Meza, and W. Bosch," Temporal and spatial variability of the bias between TOPEX-and GPS-derived total electron content", Journal of Geodesy, vol. 79, no. 4-5, pp. 175-188, 2005. [DOI:10.1007/s00190-005-0448-z]
33. [33] E. Friis-Christensen, H. Lühr, and G. Hulot," Swarm: A constellation to study the Earth's magnetic field", Earth, planets and space, vol. 58, no. 4, pp. 351-358, 2006. [DOI:10.1186/BF03351933]
34. [34] L. Goodwin, et al. ," Swarm in situ observations of F region polar cap patches created by cusp precipitation", Geophysical Research Letters, vol. 42, no. 4, pp. 996-1003, 2015. [DOI:10.1002/2014GL062610]
35. [35] A. T. Chartier, C. N. Mitchell, and E. S. Miller," Annual occurrence rates of ionospheric polar cap patches observed using Swarm", Journal of Geophysical Research: Space Physics, vol. 123, no. 3, pp. 2327-2335, 2018. [DOI:10.1002/2017JA024811]
36. [36] M. Pezzopane, and A. Pignalberi," The ESA Swarm mission to help ionospheric modeling: a new NeQuick topside formulation for mid-latitude regions", Scientific reports, vol. 9, no. 1, pp. 1-12, 2019. [DOI:10.1038/s41598-019-48440-6]
37. [37] O. A. AbuElezz, P. J. Cilliers, A. M. Mahrous, A. M. Yassen, and M. Youssef," A proposed method for improving the IRI2016 model by means of Swarm over the American Sector during the event of 5-11 September 2017", Advances in Space Research, 2021. [DOI:10.1016/j.asr.2021.01.031]
38. [38] A. Fæhn Follestad, L. B. N. Clausen, W. J. Miloch, J. van den IJssel, and R. Haagmans," Two‐Dimensional Reconstruction of Ionospheric Plasma Density Variations Using Swarm", Space Weather, vol. 18, no. 6, p. e2019SW002406, 2020. [DOI:10.1029/2019SW002406]
39. [39] S. Schaer," Mapping and predicting the Earth's ionosphere using the Global Positioning System", Bern, 1999.
40. [40] M. Hernández-Pajares, et al. ," The IGS VTEC maps: a reliable source of ionospheric information since 1998", Journal of Geodesy, vol. 83, no. 3-4, pp. 263-275, 2009. [DOI:10.1007/s00190-008-0266-1]
41. [41] D. Bilitza, L.-A. McKinnell, B. Reinisch, and T. Fuller-Rowell," The international reference ionosphere today and in the future", Journal of Geodesy, vol. 85, no. 12, pp. 909-920, 2011. [DOI:10.1007/s00190-010-0427-x]
42. [42] D. Bilitza, et al. ," The International Reference Ionosphere 2012-a model of international collaboration", Journal of Space Weather and Space Climate, vol. 4, p. A07, 2014. [DOI:10.1051/swsc/2014004]
43. [43] L. Ciraolo, F. Azpilicueta, C. Brunini, A. Meza, and S. Radicella," Calibration errors on experimental slant total electron content (TEC) determined with GPS", Journal of Geodesy, vol. 81, no. 2, pp. 111-120, 2007. [DOI:10.1007/s00190-006-0093-1]
44. [44] A. Mannucci, B. Wilson, D. Yuan, C. Ho, U. Lindqwister, and T. Runge," A global mapping technique for GPS-derived ionospheric total electron content measurements", Radio science, vol. 33, no. 3, pp. 565-582, 1998. [DOI:10.1029/97RS02707]
45. [45] U. Hugentobler, et al. ," CODE IGS analysis center technical report 2002", ed.
46. [46] N. Olsen et al. ," The Swarm satellite constellation application and research facility (SCARF) and Swarm data products", Earth, Planets and Space, vol. 65, no. 11, pp. 1189-1200, 2013. [DOI:10.5047/eps.2013.07.001]
47. [47] F. Yin, H. Lühr, J. Park, and L. Wang," Comprehensive analysis of the magnetic signatures of small‐scale traveling ionospheric disturbances, as observed by Swarm", Journal of Geophysical Research: Space Physics, vol. 124, no. 12, pp. 10794-10815, 2019. [DOI:10.1029/2019JA027523]
48. [48] G. Kervalishvili," Swarm L2 TEC product description", SW‑TR‑GFZ‑GS‑0007, rev. 4. Technical report, European Space Agency (ESA …, 2017.
49. [49] M. Noja, C. Stolle, J. Park, and H. Lühr," Long-term analysis of ionospheric polar patches based on CHAMP TEC data", Radio Science, vol. 48, no. 3, pp. 289-301, 2013. [DOI:10.1002/rds.20033]
50. [50] D. Dettmering, M. Schmidt, R. Heinkelmann, and M. Seitz," Combination of different space-geodetic observations for regional ionosphere modeling", Journal of Geodesy, vol. 85, no. 12, pp. 989-998, 2011. [DOI:10.1007/s00190-010-0423-1]
51. [51] G. Jee, H. B. Lee, Y. Kim, J. K. Chung, and J. Cho," Assessment of GPS global ionosphere maps (GIM) by comparison between CODE GIM and TOPEX/Jason TEC data: Ionospheric perspective", Journal of Geophysical Research: Space Physics, vol. 115, no. A10, 2010. [DOI:10.1029/2010JA015432]
52. [52] A. Amiri-Simkooei," Least-squares variance component estimation: theory and GPS applications", 2007. [DOI:10.54419/fz6c1c]
53. [53] M. Alizadeh," Multi-Dimensional modeling of the ionospheric parameters, using space geodetic techniques", Techn. Univ. Wien, 2013.
ارسال پیام به نویسنده مسئول



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Karimi S, Sharifi M A, Farzaneh S. The Improvement of IRI2016 global maps by the integration of Swarm and GPS observations. jgit 2022; 9 (4) :87-107
URL: http://jgit.kntu.ac.ir/article-1-863-fa.html

کریمی صدیقه، شریفی محمدعلی، فرزانه سعید. بهبود نقشه‌های جهانی مدل تجربی IRI2016 با تلفیق مشاهدات GPS و Swarm. مهندسی فناوری اطلاعات مکانی. 1400; 9 (4) :87-107

URL: http://jgit.kntu.ac.ir/article-1-863-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 9، شماره 4 - ( 12-1400 ) برگشت به فهرست نسخه ها
نشریه علمی-پژوهشی مهندسی فناوری اطلاعات مکانی Engineering Journal of Geospatial Information Technology
Persian site map - English site map - Created in 0.05 seconds with 38 queries by YEKTAWEB 4645