1. [1] Y. Zheng, L. Capra, O. Wolfson, and H. Yang, "Urban computing: concepts, methodologies, and applications," ACM Transactions on Intelligent Systems and Technology (TIST), vol. 5, pp. 1-55, 2014. [ DOI:10.1145/2629592] 2. [2] Y. Zheng, "Trajectory data mining: an overview," ACM Transactions on Intelligent Systems and Technology (TIST), vol. 6, pp. 1-41, 2015. [ DOI:10.1145/2743025] 3. [3] E. Camossi, P. Villa, and L. Mazzola, "Semantic-based anomalous pattern discovery in moving object trajectories," arXiv preprint arXiv:1305.1946, 2013. 4. [4] O. Wolfson, B. Xu, S. Chamberlain, and L. Jiang, "Moving objects databases: Issues and solutions," in Proceedings. Tenth International Conference on Scientific and Statistical Database Management (Cat. No. 98TB100243), 1998, pp. 111-122. 5. [5] A. Elragal and N. El-Gendy, "Trajectory data mining: integrating semantics," Journal of Enterprise Information Management, vol. 26, pp. 516-535, 2013. [ DOI:10.1108/JEIM-07-2013-0038] 6. [6] S. Chen, C. S. Jensen, and D. Lin, "A benchmark for evaluating moving object indexes," Proceedings of the VLDB Endowment, vol. 1, pp. 1574-1585, 2008. [ DOI:10.14778/1454159.1454229] 7. [7] R. H. Güting, T. Behr, and C. Düntgen, "SECONDO: A Platform for Moving Objects Database Research and for Publishing and Integrating Research Implementations," IEEE Data Eng. Bull., vol. 33, pp. 56-63, 2010. 8. [8] N. Pelekis, Y. Theodoridis, S. Vosinakis, and T. Panayiotopoulos, "Hermes-a framework for location-based data management," in International Conference on Extending Database Technology, 2006, pp. 1130-1134. [ DOI:10.1007/11687238_75] 9. [9] O. Wolfson, P. Sistla, B. Xu, J. Zhou, and S. Chamberlain, "DOMINO: Databases for moving objects tracking," ACM SIGMOD Record, vol. 28, pp. 547-549, 1999. [ DOI:10.1145/304181.304572] 10. [10] S. Dabiri and K. Heaslip, "Inferring transportation modes from GPS trajectories using a convolutional neural network," Transportation research part C: emerging technologies, vol. 86, pp. 360-371, 2018. [ DOI:10.1016/j.trc.2017.11.021] 11. [11] N. Eluru, V. Chakour, and A. M. El-Geneidy, "Travel mode choice and transit route choice behavior in Montreal: insights from McGill University members commute patterns," Public Transport, vol. 4, pp. 129-149, 2012. [ DOI:10.1007/s12469-012-0056-2] 12. [12] Y. Zheng, Y. Chen, Q. Li, X. Xie, and W.-Y. Ma, "Understanding transportation modes based on GPS data for web applications," ACM Transactions on the Web (TWEB), vol. 4, pp. 1-36, 2010. [ DOI:10.1145/1658373.1658374] 13. [13] Y. Endo, H. Toda, K. Nishida, and A. Kawanobe, "Deep feature extraction from trajectories for transportation mode estimation," in Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2016, pp. 54-66. [ DOI:10.1007/978-3-319-31750-2_5] 14. [14] X. Kong, M. Li, K. Ma, K. Tian, M. Wang, Z. Ning, et al., "Big trajectory data: A survey of applications and services," IEEE Access, vol. 6, pp. 58295-58306, 2018. [ DOI:10.1109/ACCESS.2018.2873779] 15. [15] J. Shang, Y. Zheng, W. Tong, E. Chang, and Y. Yu, "Inferring gas consumption and pollution emission of vehicles throughout a city," in Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, 2014, pp. 1027-1036. [ DOI:10.1145/2623330.2623653] 16. [16] X. Xiao, Y. Zheng, Q. Luo, and X. Xie, "Inferring social ties between users with human location history," Journal of Ambient Intelligence and Humanized Computing, vol. 5, pp. 3-19, 2014. [ DOI:10.1007/s12652-012-0117-z] 17. [17] R. C. Shah, C.-y. Wan, H. Lu, and L. Nachman, "Classifying the mode of transportation on mobile phones using GIS information," in Proceedings of the 2014 ACM international joint conference on pervasive and ubiquitous computing, 2014, pp. 225-229. [ DOI:10.1145/2632048.2632109] 18. [18] D. J. Patterson, L. Liao, D. Fox, and H. Kautz, "Inferring high-level behavior from low-level sensors," in International Conference on Ubiquitous Computing, 2003, pp. 73-89. [ DOI:10.1007/978-3-540-39653-6_6] 19. [19] Y. Zheng, Y. Chen, X. Xie, and W.-Y. Ma, "GeoLife2. 0: a location-based social networking service," in 2009 tenth international conference on mobile data management: systems, services and middleware, 2009, pp. 357-358. [ DOI:10.1109/MDM.2009.50] 20. [20] Y. Zheng, L. Liu, L. Wang, and X. Xie, "Learning transportation mode from raw gps data for geographic applications on the web," in Proceedings of the 17th international conference on World Wide Web, 2008, pp. 247-256. [ DOI:10.1145/1367497.1367532] 21. [21] Y. Zheng, Q. Li, Y. Chen, X. Xie, and W.-Y. Ma, "Understanding mobility based on GPS data," in Proceedings of the 10th international conference on Ubiquitous computing, 2008, pp. 312-321. [ DOI:10.1145/1409635.1409677] 22. [22] H. Wang, G. Liu, J. Duan, and L. Zhang, "Detecting transportation modes using deep neural network," IEICE TRANSACTIONS on Information and Systems, vol. 100, pp. 1132-1135, 2017. [ DOI:10.1587/transinf.2016EDL8252] 23. [23] Z. Xiao, Y. Wang, K. Fu, and F. Wu, "Identifying different transportation modes from trajectory data using tree-based ensemble classifiers," ISPRS International Journal of Geo-Information, vol. 6, p. 57, 2017. [ DOI:10.3390/ijgi6020057] 24. [24] S. Dabiri, C.-T. Lu, K. Heaslip, and C. K. Reddy, "Semi-supervised deep learning approach for transportation mode identification using GPS trajectory data," IEEE Transactions on Knowledge and Data Engineering, vol. 32, pp. 1010-1023, 2019. [ DOI:10.1109/TKDE.2019.2896985] 25. [25] A. Nawaz, H. Zhiqiu, W. Senzhang, Y. Hussain, I. Khan, and Z. Khan, "Convolutional LSTM based transportation mode learning from raw GPS trajectories," IET Intelligent Transport Systems, vol. 14, pp. 570-577, 2020. [ DOI:10.1049/iet-its.2019.0017] 26. [26] J. James, "Travel Mode Identification With GPS Trajectories Using Wavelet Transform and Deep Learning," IEEE Transactions on Intelligent Transportation Systems, 2020. 27. [27] Z. Huang, P. Wang, and Y. Liu, "Statistical characteristics and transportation mode identification of individual trajectories," International Journal of Modern Physics B, vol. 34, p. 2050092, 2020. [ DOI:10.1142/S0217979220500927] 28. [28] B. E. Boser, I. M. Guyon, and V. N. Vapnik, "A training algorithm for optimal margin classifiers," in Proceedings of the fifth annual workshop on Computational learning theory, 1992, pp. 144-152. [ DOI:10.1145/130385.130401] 29. [29] Y. Ma and G. Guo, Support vector machines applications vol. 649: Springer, 2014. [ DOI:10.1007/978-3-319-02300-7] 30. [30] S. R. Safavian and D. Landgrebe, "A survey of decision tree classifier methodology," IEEE transactions on systems, man, and cybernetics, vol. 21, pp. 660-674, 1991. [ DOI:10.1109/21.97458] 31. [31] J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques: Elsevier, 2011. 32. [32] R. Hecht-Nielsen, "Theory of the backpropagation neural network," in Neural networks for perception, ed: Elsevier, 1992, pp. 65-93. [ DOI:10.1016/B978-0-12-741252-8.50010-8] 33. [33] T. Vincenty, "Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations," Survey review, vol. 23, pp. 88-93, 1975. [ DOI:10.1179/sre.1975.23.176.88] 34. [34] R. W. Schafer, "What is a Savitzky-Golay filter?[lecture notes]," IEEE Signal processing magazine, vol. 28, pp. 111-117, 2011. [ DOI:10.1109/MSP.2011.941097] 35. [35] Y. Zheng, H. Fu, X. Xie, W.-Y. Ma, and Q. Li, "Geolife GPS trajectory dataset-user guide," Microsoft Research, 2011. 36. [36] Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma, "Mining interesting locations and travel sequences from GPS trajectories," in Proceedings of the 18th international conference on World wide web, 2009, pp. 791-800. [ DOI:10.1145/1526709.1526816] 37. [37] Y. Zheng, X. Xie, and W.-Y. Ma, "GeoLife: A collaborative social networking service among user, location and trajectory," IEEE Data Eng. Bull., vol. 33, pp. 32-39, 2010. 38. [38] I. Syarif, A. Prugel-Bennett, and G. Wills, "SVM parameter optimization using grid search and genetic algorithm to improve classification performance," Telkomnika, vol. 14, p. 1502, 2016. [ DOI:10.12928/telkomnika.v14i4.3956]
|