[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
داوران::
ثبت نام و اشتراک::
تماس با ما::
تسهیلات پایگاه::
بایگانی مقالات زیر چاپ::
آمار نشریه::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
آمار سایت
مقالات منتشر شده: 324
نرخ پذیرش: 63.1
نرخ رد: 36.9
میانگین داوری: 208 روز
میانگین انتشار: 345 روز
..
:: دوره 10، شماره 2 - ( 8-1401 ) ::
جلد 10 شماره 2 صفحات 118-105 برگشت به فهرست نسخه ها
برآورد پارامترهای هندسی گسل با استفاده از میدان جابجایی سه بعدی حاصل از روش تداخل سنجی راداری (مطالعه موردی: زمین‌لرزه 1396 سرپل ذهاب)
رضا رحیمی پور ، حمید مهرابی*
دانشگاه اصفهان
چکیده:   (2362 مشاهده)
زمین­لرزه ­ها که عمدتاً در مرز صفحات و روی گسل­ها رخ می­ دهند، عامل ایجاد خسارت­های مالی و جانی می­ شوند. مطالعه زلزله­ ها و تغییرشکل زمین، می­تواند به درک بهتر مکانیزم زلزله­ ها و در نتیجه به مدیریت بحران­های ناشی از آن کمک کند. یک گسل را می­ توان با هفت پارامتر هندسی مشخص نمود که در تعریف اوکادا این هفت پارامتر شامل: طول، عرض، عمق، امتداد، شیب، پیچ و لغزش می­ باشد. یکی از روش­های برآورد این پارامترها، استفاده از بردارهای جابجایی حاصل از روش­های ژئودتیکی GPS و تداخل­ سنجی راداری(InSAR) می­ باشد. در این پژوهش، با استفاده از پردازش تصاویر راداری ماهواره سنتینل-1 در مدارات بالاگذر و پائین ­گذر و استفاده از تکنیک تداخل­ سنجی راداری، جابجایی­ های در راستای دید ماهواره(LOS) برای زمین­ لرزه 1396 کرمانشاه برآورد شد، سپس با تلفیق جابجائی­های LOS، مؤلفه­ های میدان جابجائی سه­ بعدی استخراج شدند. با استفاده از حل مسأله معکوس روی جابجائی ­های LOS در روش بایزین پارامترهای گسل کور کرمانشاه برآورد گردید. با استفاده از این روش، 41.7 کیلومتر طول، 13.5 کیلومتر عرض و 14.9 کیلومتر عمق گسل، 350.8 درجه آزیموت، 16 درجه شیب و 2.98 درجه لغزش برای این گسل برآورد شد. سپس از روش کمترین مربعات و مؤلفه­ های سه­ بعدی جابجائی برای حل مسأله معکوس استفاده شد تا پارامترهای هندسی گسل برآورد شوند. در این روش مقادیر برای طول، عرض و عمق گسل به ترتیب 45.6، 17.5 و 19.6 کیلومتر و زوایای آزیموت و شیب گسل به ترتیب 353، 16.9 درجه برآورد شدند. گسل مسبب این زلزله، از نوع گسل معکوس کور می­باشد. بیشترین لغزش در حدود 3 متر در راستای عمود به صفحه گسل، تقریباً در عمق 7 کیلومتری زمین رخ داده است. با توجه به مقایسه نتایج با کاتالوگ­های زمین­ شناسی، می ­توان گفت که استفاده از مؤلفه­  های سه­ بعدی میدان جابجائی در حل مسئله معکوس، پارامترهای گسل را با دقت بهتری در مقایسه با پارامترهای حاصل شده از جابجائی­های LOS برآورد می­ کند.
 
واژه‌های کلیدی: تداخل سنجی راداری، پارامترهای هندسی گسل، حل مسئله معکوس، زلزله سرپل ذهاب
متن کامل [PDF 1657 kb]   (726 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: ژئودزی (عمومی)
دریافت: 1401/3/18 | پذیرش: 1401/8/3 | انتشار: 1401/8/10
فهرست منابع
1. [1] W. D. Barnhart, C. M. Brengman, S. Li, and K. E. Peterson, "Ramp-flat basement structures of the Zagros Mountains inferred from co-seismic slip and afterslip of the 2017 Mw7. 3 Darbandikhan, Iran/Iraq earthquake," Earth and Planetary Science Letters, vol. 496, pp. 96-107, 2018. [DOI:10.1016/j.epsl.2018.05.036]
2. [2] J. Jackson and T. Fitch, "Basement faulting and the focal depths of the larger earthquakes in the Zagros mountains (Iran)," Geophysical Journal International, vol. 64, no. 3, pp. 561-586, 1981, doi: 10.1111/j.1365-246X.1981.tb02685.x. [DOI:10.1111/j.1365-246X.1981.tb02685.x]
3. [3] S. Vajedian et al., "Coseismic deformation field of the Mw 7.3 12 November 2017 Sarpol-e Zahab (Iran) earthquake: A decoupling horizon in the northern Zagros Mountains inferred from InSAR observations," Remote Sensing, vol. 10, no. 10, p. 1589, 2018. [DOI:10.3390/rs10101589]
4. [4] F. Yaminifard, M. H. Sedghi, A. Gholamzadeh, M. Tatar, and K. Hessami, "Active faulting of the southeastern-most Zagros (Iran): Microearthquake seismicity and crustal structure," Journal of Geodynamics, vol. 55, pp. 56-65, 2012/04/01/ 2012, doi: [DOI:10.1016/j.jog.2012.01.003. https://doi.org/10.1016/j.jog.2012.01.003]
5. [5] Y. Okada, "Internal deformation due to shear and tensile faults in a half-space," Bulletin of the seismological society of America, vol. 82, no. 2, pp. 1018-1040, 1992. [DOI:10.1785/BSSA0820021018]
6. [6] B. Delouis, D. Giardini, P. Lundgren, and J. Salichon, "Joint inversion of InSAR, GPS, teleseismic, and strong-motion data for the spatial and temporal distribution of earthquake slip: Application to the 1999 Izmit mainshock," Bulletin of the Seismological Society of America, vol. 92, no. 1, pp. 278-299, 2002. [DOI:10.1785/0120000806]
7. [7] R. Pedersen, S. Jónsson, T. Árnadóttir, F. Sigmundsson, and K. L. Feigl, "Fault slip distribution of two June 2000 Mw6. 5 earthquakes in South Iceland estimated from joint inversion of InSAR and GPS measurements," Earth and Planetary Science Letters, vol. 213, no. 3-4, pp. 487-502, 2003. [DOI:10.1016/S0012-821X(03)00302-9]
8. [8] G. J. Funning, B. Parsons, T. J. Wright, J. A. Jackson, and E. J. Fielding, "Surface displacements and source parameters of the 2003 Bam (Iran) earthquake from Envisat advanced synthetic aperture radar imagery," Journal of Geophysical Research: Solid Earth, vol. 110, no. B9, 2005. [DOI:10.1029/2004JB003338]
9. [9] S. Tavani et al., "The seismogenic fault system of the 2017 M w 7.3 Iran-Iraq earthquake: constraints from surface and subsurface data, cross-section balancing, and restoration," Solid Earth, vol. 9, no. 3, pp. 821-831, 2018. [DOI:10.5194/se-9-821-2018]
10. [10] J. Kuang et al., "Coseismic deformation and source model of the 12 November 2017 MW 7.3 Kermanshah Earthquake (Iran-Iraq border) investigated through DInSAR measurements," International journal of remote sensing, vol. 40, no. 2, pp. 532-554, 2019. [DOI:10.1080/01431161.2018.1514542]
11. [11] Y. Maghsoudi, Remote Sensing. K. N. TOOSI, 2019.
12. [12] H. Mehrabi, B. Voosoghi, M. Motagh, and R. F. Hanssen, "Three-dimensional displacement fields from InSAR through Tikhonov regularization and least-squares variance component estimation," Journal of Surveying Engineering, vol. 145, no. 4, p. 04019011, 2019. [DOI:10.1061/(ASCE)SU.1943-5428.0000289]
13. [13] N. Bechor, "Extending interferometric synthetic aperture radar measurements from one to two dimensions," Stanford University, 2007.
14. [14] Mehrabi, "Three-dimensional displacement fields from InSAR through Tikhonov regularization and least-squares variance component estimation," Journal of Geomatics Science And Technology, vol. 9, no. 1 #a00641, pp. -, 2019. [Online]. Available: https://www.sid.ir/fa/JOURNAL/ViewPaper.aspx?id=485705.
15. [15] Y. Fialko, M. Simons, and D. Agnew, "The complete (3‐D) surface displacement field in the epicentral area of the 1999 Mw7. 1 Hector Mine earthquake, California, from space geodetic observations," Geophysical research letters, vol. 28, no. 16, pp. 3063-3066, 2001. [DOI:10.1029/2001GL013174]
16. [16] H. Mehrabi, "Three-dimensional strain descriptors at the Earth's surface through 3D retrieved co-event displacement fields of differential interferometric synthetic aperture radar," Journal of Geodesy, vol. 95, no. 4, pp. 1-16, 2021. [DOI:10.1007/s00190-021-01489-6]
17. [17] G. H. Golub, P. C. Hansen, and D. P. O'Leary, "Tikhonov regularization and total least squares," SIAM journal on matrix analysis and applications, vol. 21, no. 1, pp. 185-194, 1999. [DOI:10.1137/S0895479897326432]
18. [18] P. Xu, Y. Shen, Y. Fukuda, and Y. Liu, "Variance component estimation in linear inverse ill-posed models," Journal of Geodesy, vol. 80, no. 2, pp. 69-81, 2006. [DOI:10.1007/s00190-006-0032-1]
19. [19] M. Bagnardi and A. Hooper, "Inversion of Surface Deformation Data for Rapid Estimates of Source Parameters and Uncertainties: A Bayesian Approach," Geochemistry, Geophysics, Geosystems, vol. 19, no. 7, pp. 2194-2211, 2018, doi: [DOI:10.1029/2018GC007585. https://doi.org/10.1029/2018GC007585]
20. [20] S. Minson, M. Simons, and J. Beck, "Bayesian inversion for finite fault earthquake source models I-Theory and algorithm," Geophysical Journal International, vol. 194, no. 3, pp. 1701-1726, 2013. [DOI:10.1093/gji/ggt180]
21. [21] P. M. Mai and G. C. Beroza, "A spatial random field model to characterize complexity in earthquake slip," Journal of Geophysical Research: Solid Earth, vol. 107, no. B11, pp. ESE 10-1-ESE 10-21, 2002. [DOI:10.1029/2001JB000588]
22. [22] M. Bagnardi and A. J. Hooper, "GBIS (Geodetic Bayesian Inversion Software): Rapid inversion of InSAR and GNSS data to estimate surface deformation source parameters and uncertainties," in AGU Fall Meeting Abstracts, 2017, vol. 2017, pp. G23A-0881.
23. [23] W. Menke, Geophysical data analysis: Discrete inverse theory. Academic press, 2018.
24. [24] R. C. Aster, B. Borchers, and C. H. Thurber, Parameter estimation and inverse problems. Elsevier, 2018. [DOI:10.1016/B978-0-12-804651-7.00015-8]
25. [25] J. C. Santamarina and D. Fratta, Discrete signals and inverse problems: an introduction for engineers and scientists. John Wiley & Sons, 2005. [DOI:10.1002/0470021896]
26. [26] M. Amighpey, B. Voosoghi, and M. Motagh, "Deformation and fault parameters of the 2005 Qeshm earthquake in Iran revisited: A Bayesian simulated annealing approach applied to the inversion of space geodetic data," International journal of applied earth observation and geoinformation, vol. 26, pp. 184-192, 2014. [DOI:10.1016/j.jag.2013.06.006]
27. [27] R. F. Hanssen, Radar interferometry: data interpretation and error analysis. Springer Science & Business Media, 2001. [DOI:10.1007/0-306-47633-9]
28. [28] F. Meyer, B. Kampes, R. Bamler, and J. Fischer, Methods for Atmospheric Correction in INSAR Data. 2006.
29. [29] L. K. Bui, "Small baseline subset InSAR data processing: design of interferogram networks and noise analysis in InSAR-derived deformation time series," Curtin University, 2021.
ارسال پیام به نویسنده مسئول



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rahimipour R, Mehrabi H. SAR Interferometry, Bayesian inversion, Sarpol-e zahab earthquake, Fault source parameters. jgit 2022; 10 (2) :105-118
URL: http://jgit.kntu.ac.ir/article-1-881-fa.html

رحیمی پور رضا، مهرابی حمید. برآورد پارامترهای هندسی گسل با استفاده از میدان جابجایی سه بعدی حاصل از روش تداخل سنجی راداری (مطالعه موردی: زمین‌لرزه 1396 سرپل ذهاب). مهندسی فناوری اطلاعات مکانی. 1401; 10 (2) :105-118

URL: http://jgit.kntu.ac.ir/article-1-881-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 10، شماره 2 - ( 8-1401 ) برگشت به فهرست نسخه ها
نشریه علمی-پژوهشی مهندسی فناوری اطلاعات مکانی Engineering Journal of Geospatial Information Technology
Persian site map - English site map - Created in 0.05 seconds with 38 queries by YEKTAWEB 4660