[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
داوران::
ثبت نام و اشتراک::
تماس با ما::
تسهیلات پایگاه::
بایگانی مقالات زیر چاپ::
آمار نشریه::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
آمار سایت
مقالات منتشر شده: 326
نرخ پذیرش: 63.2
نرخ رد: 36.8
میانگین داوری: 208 روز
میانگین انتشار: 344 روز
..
:: دوره 12، شماره 2 - ( 6-1403 ) ::
جلد 12 شماره 2 صفحات 22-1 برگشت به فهرست نسخه ها
بهبود الگوریتم خوشه‌بندی K-Means با استفاده از الگوریتم ژنتیک به منظور تحلیل مکانی شناسایی لکه‌های نفتی در تصاویر پلاریمتری SAR
مهرداد کاوه ، یاسر ابراهیمیان قاجاری*
دانشگاه صنعتی نوشیروانی بابل
چکیده:   (772 مشاهده)
وجود لکه‌های نفتی در بستر دریاها و اقیانوس‌ها، یکی از نگرانی‌ها و دغدغه‌های اصلی محققان در زمینه اکوسیستم دریایی می‌باشد. در این تحقیق از روش‌ خوشه‌بندی K-Means مبتنی بر الگوریتم ژنتیک (GA) جهت شناسایی لکه‌های نفتی در سطح دریا استفاده شده است. هدف اصلی ارائه الگوریتم K-Means بهبودیافته با الگوریتم GA، ایجاد یک جستجوی هوشمند و نه صرفا تصادفی در انتخاب مراکز دسته‌های اولیه می‌باشد تا الگوریتم به خوشه‌های بهینه مسئله دست پیدا کند. برای این منظور ابتدا الگوریتم‌های کاهش نویز اسپکل و استخراج ویژگی، به منظور پیش‌پردازش تصاویر رادار دهانه مصنوعی (SAR) اعمال شده‌اند. سپس مرکز خوشه‌های بهینه، با هدف بیشترین فاصله بیرون خوشه‌ای، توسط الگوریتم GA تعیین شده‌اند. در نهایت برای تعیین خوشه‌های نهایی، از الگوریتم K-Means با هدف بیشترین شباهت درون خوشه‌ای، استفاده شده است. به منظور ارزیابی روش‌های خوشه‌بندی، از داده واقعیت زمینی رقومی‌شده استفاده شده است. همچنین جهت ارزیابی الگوریتم K-Means بهبودیافته با GA از الگوریتم‌های بهینه‌سازی ازدحام ذرات (PSO)، بهینه‌سازی مبتنی بر جغرافیای زیستی (BBO)، الگوریتم کلونی زنبور مصنوعی (ABC) و روش خوشه‌بندی K-Means استاندارد استفاده شده است.  نتایج حاصل از الگوریتم K-Means بهبودیافته توسط GA دارای صحت بیشتری نسبت به سایر الگوریتم‌ها می‌باشد. ویژگی آنتروپی توانسته است دقت کلی 24/83 را حاصل کند که در قیاس با سایر ویژگی‌ها از دقت کلی کمتری برخوردار است، اما دارای قطعیت و صحت بالاتری می‌باشد. ویژگی‌های یاماگوچی، فریمن و مولفه C11، علارغم اینکه دقت کلی 90 درصدی را حاصل کرده‌اند، اما به ترتیب با خطای نوع دوم برابر با 18، 11 و 12 درصدی، صحت کمتری را نسبت به دو ویژگی دیگر نشان داده‌اند. نتایج حاصل از این تحقیق نشان می‌دهد که رویکرد پیشنهادی یادگیری ماشین در مقایسه با معماری‌های سنتی، عملکرد بسیار خوبی در مجموعه داده‌های خوشه‌بندی دارد.
 
واژه‌های کلیدی: لکه‌های نفتی، تصاویر پلاریمتری SAR، انتخاب ویژگی، الگوریتم ژنتیک و الگوریتم K-Means.
متن کامل [PDF 1809 kb]   (120 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: سیستمهای اطلاعات مکانی (عمومی)
دریافت: 1401/3/26 | پذیرش: 1401/12/15 | انتشار الکترونیک پیش از انتشار نهایی: 1403/5/16 | انتشار: 1403/8/8
فهرست منابع
1. [1] Z. Jiao, G. Jia and Y. Cai, "A new approach to oil spill detection that combines deep learning with unmanned aerial vehicles," Computers & Industrial Engineering, vol. 135, pp. 1300-1311, 2018. [DOI:10.1016/j.cie.2018.11.008]
2. [2] N. Aghaei, G. Akbarizadeh, and A. Kosarian, "GreyWolfLSM: an accurate oil spill detection method based on level set method from synthetic aperture radar imagery," European Journal of Remote Sensing, pp. 1-18, 2022. [DOI:10.1080/22797254.2022.2037468]
3. [3] J. Xu, X. Pan, B. Jia, X. Wu and B. Li, "Oil spill detection using LBP feature and K-means clustering in shipborne radar image," Journal of Marine Science and Engineering, vol. 9, no. 1, pp. 65, 2021. [DOI:10.3390/jmse9010065]
4. [4] W. Alpers, B. Holt and K. Zeng, "Oil spill detection by imaging radars: Challenges and pitfalls," Remote Sensing of Environment, vol. 201, pp. 133-147, 2017. [DOI:10.1016/j.rse.2017.09.002]
5. [5] M. O. Jeffries, K. Morris, W. F. Weeks and H. Wakabayashi, "Structural and stratigraphie features and ERS 1 synthetic aperture radar backscatter characteristics of ice growing on shallow lakes in NW Alaska, winter 1991-1992," Journal of Geophysical Research: Oceans, vol. 99, no. 11, pp. 22459-22471, 1994. [DOI:10.1029/94JC01479]
6. [6] S. Naz, M. F. Iqbal, I. Mahmood and M. Allam, "Marine oil spill detection using Synthetic Aperture Radar over Indian Ocean," Marine Pollution Bulletin, vol. 162, pp. 111921, 2021. [DOI:10.1016/j.marpolbul.2020.111921]
7. [7] D. Mera, M. Fernández-Delgado, J. M. Cotos, J. R. R. Viqueira and S. Barro, "Comparison of a massive and diverse collection of ensembles and other classifiers for oil spill detection in SAR satellite images," Neural Computing and Applications, vol. 28, no. 1, pp. 1101-1117, 2017. [DOI:10.1007/s00521-016-2415-4]
8. [8] Y. Guo and H. Z. Zhang, "Oil spill detection using synthetic aperture radar images and feature selection in shape space," International Journal of Applied Earth Observation and Geoinformation, vol. 30, pp. 146-157, 2014. [DOI:10.1016/j.jag.2014.01.011]
9. [9] B. Fiscella, A. Giancaspro, F. Nirchio, P. Pavese and P. Trivero, "Oil spill detection using marine SAR images," International Journal of Remote Sensing, vol. 21, no. 18, pp. 3561-3566, 2000. [DOI:10.1080/014311600750037589]
10. [10] F. Nirchio, M., Sorgente, A. Giancaspro, W. Biamino, E. Parisato, R. Ravera and P. Trivero, "Automatic detection of oil spills from SAR images," International Journal of Remote Sensing, vol. 26, no. 6, pp. 1157-1174, 2005. [DOI:10.1080/01431160512331326558]
11. [11] A. S. Solberg, G. Storvik, R. Solberg and E. Volden, "Automatic detection of oil spills in ERS SAR images," IEEE Transactions on geoscience and remote sensing, vol. 37, no. 4, pp. 1916-1924, 1999. [DOI:10.1109/36.774704]
12. [12] K. Topouzelis, V. Karathanassi, P. Pavlakis and D. Rokos, "Dark formation detection using neural networks," International Journal of Remote Sensing, vol. 29, no. 16, pp. 4705-4720, 2008. [DOI:10.1080/01431160801891770]
13. [13] F. Frate, A. Petrocchi, J. Lichtenegger and G. Calabresi, "Neural networks for oil spill detection using ERS-SAR data," IEEE Transactions on geoscience and remote sensing, vol. 38, no. 5, pp. 2282-2287, 2000. [DOI:10.1109/36.868885]
14. [14] T. F. Kanaa, E. Tonye, G. Mercier, V. D. P. Onana and J. P. Rudant, "Multiscale Segmentation of Oil Slick in SAR Images based on Morphological Pyramid," In ENVISAT and ERS Symposium, Salsburg, Australie, pp. 6-10, 2004.
15. [15] A. K. Liu, C. Y. Peng and S. S. Chang, "Wavelet analysis of satellite images for coastal watch," IEEE Journal of Oceanic Engineering, vol. 22, no. 1, pp. 9-17, 1997. [DOI:10.1109/48.557535]
16. [16] S. Y. Wu and A. K. Liu, "Towards an automated ocean feature detection, extraction and classification scheme for SAR imagery," International Journal of Remote Sensing, vol. 24, no. 5, pp. 935-951, 2003. [DOI:10.1080/01431160210144606]
17. [17] S. Derrode and G. Mercier, "Unsupervised multiscale oil slick segmentation from SAR images using a vector HMC model," Pattern Recognition, vol. 40, no. 3, pp. 1135-1147, 2007. [DOI:10.1016/j.patcog.2006.04.032]
18. [18] R. T. Araújo, F. N. de Medeiros, R. C. Costa, R. C. Marques, R. B. Moreira and J. L. Silva, "Locating oil spill in SAR images using wavelets and region growing," In International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, Heidelberg, pp. 1184-1193, 2004. [DOI:10.1007/978-3-540-24677-0_121]
19. [19] G. Benelli and A. Garzelli, "Oil-spills detection in SAR images by fractal dimension estimation," In International Geoscience and Remote Sensing Symposium, vol. 1, pp. 218-220, 1999. [DOI:10.1109/IGARSS.1999.773452]
20. [20] M. Marghany, M. Hashim and A. P. Cracknell, "Fractal dimension algorithm for detecting oil spills using RADARSAT-1 SAR," In International Conference on Computational Science and Its Applications, Springer, Berlin, Heidelberg, pp. 1054-1062, 2007. [DOI:10.1007/978-3-540-74472-6_87]
21. [21] M. Marghany, A. P. Cracknell and M. Hashim, "Modification of fractal algorithm for oil spill detection from RADARSAT-1 SAR data," International Journal of Applied Earth Observation and Geoinformation, vol. 11, no. 2, pp. 96-102, 2009. [DOI:10.1016/j.jag.2008.09.002]
22. [22] D. Latini, F. Del Frate and C. E. Jones, "Multi-frequency and polarimetric quantitative analysis of the Gulf of Mexico oil spill event comparing different SAR systems," Remote sensing of environment, vol. 183, pp. 26-42, 2016. [DOI:10.1016/j.rse.2016.05.014]
23. [23] Y. Li and J. Li, "Oil spill detection from SAR intensity imagery using a marked point process," Remote Sensing of Environment, vol. 114, no. 7, pp. 1590-1601, 2010. [DOI:10.1016/j.rse.2010.02.013]
24. [24] S. Skrunes, C. Brekke and T. Eltoft, "Oil spill characterization with multi-polarization C-and X-band SAR," In International Geoscience and Remote Sensing Symposium (IGARSS), pp. 5117-5120, 2012. [DOI:10.1109/IGARSS.2012.6352459]
25. [25] K. A. S. Al Abri, N. Poojary and J. Menezes, "A Novel Segmentation Technique for Clustering Oil Spill Data from Hyperspectral Images," Proc. of Int. Conf. on Advances in Communication and Information Technology, 2012.
26. [26] J. Xiao, Y. Yan, J. Zhang and Y. Tang, "A quantum-inspired genetic algorithm for k-means clustering," Expert Systems with Applications, vol. 37, no. 7, pp. 4966-4973, 2010. [DOI:10.1016/j.eswa.2009.12.017]
27. [27] F. G. Tari and Z. Hashemi, "Prioritized K-mean clustering hybrid GA for discounted fixed charge transportation problems," Computers & Industrial Engineering, vol. 126, pp. 63-74, 2018. [DOI:10.1016/j.cie.2018.09.019]
28. [28] M. Kaveh, M. S. Mesgari and A. Khosravi, "Solving the local positioning problem using a four-layer artificial neural network," Engineering Journal of Geospatial Information Technology, vol. 7, no. 4, pp. 21-40, 2020.
29. [29] M. Z. Islam, V. Estivill-Castro, M. A. Rahman and T. Bossomaier, "Combining K-Means and a genetic algorithm through a novel arrangement of genetic operators for high quality clustering," Expert Systems with Applications, vol. 91, pp. 402-417, 2018. [DOI:10.1016/j.eswa.2017.09.005]
30. [30] M. Kaveh, M. Kaveh, M. S. Mesgari and R. Sadeghi Paland, "Multiple criteria decision-making for hospital location-allocation based on improved genetic algorithm," Applied Geomatics, vol. 12, no. 3, pp. 291-306, 2020. [DOI:10.1007/s12518-020-00297-5]
31. [31] K. J. Kim and H. Ahn, "A recommender system using GA K-means clustering in an online shopping market," Expert systems with applications, vol. 34, no. 2, pp. 1200-1209, 2008. [DOI:10.1016/j.eswa.2006.12.025]
32. [32] A. A. Matkan, M. Hajeb and Z. Azarakhsh, "Oil spill detection from SAR image using SVM based classification," International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, SMPR, vol. 1, pp. W3, 2013. [DOI:10.5194/isprsarchives-XL-1-W3-55-2013]
33. [33] M. Kaveh and M. S. Mesgari, "Improved biogeography-based optimization using migration process adjustment: an approach for location-allocation of ambulances," Computers & Industrial Engineering, vol. 135, p. 800-813, 2019. [DOI:10.1016/j.cie.2019.06.058]
34. [34] O. Rostami and M. Kaveh, "Optimal feature selection for SAR image classification using biogeography-based optimization (BBO), artificial bee colony (ABC) and support vector machine (SVM): a combined approach of optimization and machine learning," Computational Geosciences, vol. 25, no. 3, pp. 911-930, 2021. [DOI:10.1007/s10596-020-10030-1]
35. [35] J. Wang, M. Khishe, M Kaveh and H. Mohammadi, "Binary chimp optimization algorithm (BChOA): a new binary meta-heuristic for solving optimization problems," Cognitive Computation, vol. 13, no. 5, pp.1297-1316, 2021. [DOI:10.1007/s12559-021-09933-7]
36. [36] S. Sun, R. Liu, C. Yang, H. Zhou, J. Zhao and J. Ma, "Comparative study on the speckle filters for the very high-resolution polarimetric synthetic aperture radar imagery," Journal of Applied Remote Sensing, vol. 10, no. 4, pp.045014, 2016. [DOI:10.1117/1.JRS.10.045014]
37. [37] S. Foucher and C. López-Martínez, "Analysis, evaluation, and comparison of polarimetric SAR speckle filtering techniques," IEEE transactions on image processing, vol. 23, no. 4, pp. 1751-1764, 2014. [DOI:10.1109/TIP.2014.2307437]
38. [38] J. S. Lee, T. L. Ainsworth and Y. Wang, "On polarimetric SAR speckle filtering," In 2012 IEEE International Geoscience and Remote Sensing Symposium, pp. 111-114, 2012. [DOI:10.1109/IGARSS.2012.6351624]
39. [39] F. Sadeghi, A. Larijani, O. Rostami, D. Martín and P. Hajirahimi, "A Novel Multi-Objective Binary Chimp Optimization Algorithm for Optimal Feature Selection: Application of Deep-Learning-Based Approaches for SAR Image Classification," Sensors, vol. 23, no. 3, pp. 1180, 2023. [DOI:10.3390/s23031180]
40. [40] M. Kaveh, M. S. Mesgari and B. Saeidian, "Orchard Algorithm (OA): A new meta-heuristic algorithm for solving discrete and continuous optimization problems," Mathematics and Computers in Simulation, vol. 208, pp. 95-135, 2023. [DOI:10.1016/j.matcom.2022.12.027]
41. [41] M. Kaveh, M. S. Mesgari, D. Martín and M. Kaveh, "TDMBBO: a novel three-dimensional migration model of biogeography-based optimization (case study: facility planning and benchmark problems)," The Journal of Supercomputing, vol. 2023, pp. 1-56, 2023. [DOI:10.1007/s11227-023-05047-z]
42. [42] M. Kaveh and M. S. Mesgari, "Application of meta-heuristic algorithms for training neural networks and deep learning architectures: a comprehensive review," Neural Processing Letters, vol. 2022, pp. 1-104, 2022.
43. [43] S. Baniasadi, O. Rostami, D. Martín and M. Kaveh, "A Novel Deep Supervised Learning-Based Approach for Intrusion Detection in IoT Systems," Sensors, vol. 22, no. 12, pp. 4459, 2022. [DOI:10.3390/s22124459]
44. [44] F. Sadeghi, O. Rostami, M. K. Yi and S. Hwang, "A deep learning approach for detecting Covid-19 using the chest X-ray images," CMC-Computers Materials & Continua, vol. 74, no. 1, pp. 751-768, 2023. [DOI:10.32604/cmc.2023.031519]
45. [45] M. Kaveh and M. S. Mesgari, "Hospital site selection using hybrid PSO algorithm-Case study: District 2 of Tehran," Scientific-Research Quarterly of Geographical Data (SEPEHR), vol. 28, no. 111, pp. 7-22, 2019.
46. [46] N. Kianfar, M. S. Mesgari, A. Mollalo and M. Kaveh, "Spatio-temporal modeling of COVID-19 prevalence and mortality using artificial neural network algorithms," Spatial and Spatio-temporal Epidemiology, vol. 40, pp. 100471, 2022. [DOI:10.1016/j.sste.2021.100471]
ارسال پیام به نویسنده مسئول



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kaveh M, Ebrahimian Ghajari Y. Improvement of K-Means clustering algorithm using genetic algorithm for spatial analysis of the oil spill detection in polarimetric SAR images. jgit 2024; 12 (2) :1-22
URL: http://jgit.kntu.ac.ir/article-1-883-fa.html

کاوه مهرداد، ابراهیمیان قاجاری یاسر. بهبود الگوریتم خوشه‌بندی K-Means با استفاده از الگوریتم ژنتیک به منظور تحلیل مکانی شناسایی لکه‌های نفتی در تصاویر پلاریمتری SAR. مهندسی فناوری اطلاعات مکانی. 1403; 12 (2) :1-22

URL: http://jgit.kntu.ac.ir/article-1-883-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 12، شماره 2 - ( 6-1403 ) برگشت به فهرست نسخه ها
نشریه علمی-پژوهشی مهندسی فناوری اطلاعات مکانی Engineering Journal of Geospatial Information Technology
Persian site map - English site map - Created in 0.05 seconds with 38 queries by YEKTAWEB 4660