1. [1] X. Li and D. K. Dey, "Estimation of COVID-19 mortality in the United States using Spatio-temporal Conway Maxwell Poisson model." Spatial Statistics, vol. 49, p. 100542, 2022. [ DOI:10.1016/j.spasta.2021.100542] 2. [2] W.-L. Shang, J. Chen, H. Bi, Y. Sui, Y. Chen, and H. Yu, "Impacts of COVID-19 pandemic on user behaviors and environmental benefits of bike sharing: A big-data analysis." Applied Energy, vol. 285, p. 116429, 2021. [ DOI:10.1016/j.apenergy.2020.116429] 3. [3] S. Hu, C. Xiong, Z. Liu, and L. Zhang, "Examining spatiotemporal changing patterns of bike-sharing usage during COVID-19 pandemic." Journal of Transport Geography, vol. 91, p. 102997, 2021. [ DOI:10.1016/j.jtrangeo.2021.102997] 4. [4] J. F. Teixeira, C. Silva, and F. Moura e Sá, "The motivations for using bike sharing during the COVID-19 pandemic: Insights from Lisbon," Transportation Research Part F: Traffic Psychology and Behaviour, vol. 82, pp. 378-399, 2021. [ DOI:10.1016/j.trf.2021.09.016] 5. [5] L. R. de A. Morais and G. S. da S. Gomes, "Applying Spatio-temporal Scan Statistics and Spatial Autocorrelation Statistics to identify Covid-19 clusters in the world - A Vaccination Strategy?," Spatial and Spatio-temporal Epidemiology, vol. 39, p. 100461, 2021. [ DOI:10.1016/j.sste.2021.100461] 6. [6] X. Chai, X. Guo, J. Xiao, and J. Jiang, "Analysis of Spatial-temporal Behavior Pattern of the Share Bike Usage during COVID-19 Pandemic in Beijing." arXiv, 2020. [ DOI:10.1111/tgis.12784] 7. [7] J. Chibwe, S. Heydari, A. Faghih Imani, and A. Scurtu, "An exploratory analysis of the trend in the demand for the London bike-sharing system: From London Olympics to Covid-19 pandemic," Sustainable Cities and Society, vol. 69, p. 102871, 2021. [ DOI:10.1016/j.scs.2021.102871] 8. [8] S. Bai and J. Jiao, "Dockless E-scooter usage patterns and urban built Environments: A comparison study of Austin, TX, and Minneapolis, MN," Travel Behaviour and Society, vol. 20, pp. 264-272, 2020. [ DOI:10.1016/j.tbs.2020.04.005] 9. [9] H. Yang, Y. Zhang, L. Zhong, X. Zhang, and Z. Ling, "Exploring spatial variation of bike sharing trip production and attraction: A study based on Chicago's Divvy system," Applied Geography, vol. 115, p. 102130, 2020. [ DOI:10.1016/j.apgeog.2019.102130] 10. [10] X. Zhou, "Understanding Spatiotemporal Patterns of Biking Behavior by Analyzing Massive Bike Sharing Data in Chicago," PLOS ONE, vol. 10, no. 10, p. e0137922, 2015. [ DOI:10.1371/journal.pone.0137922] 11. [11] G. McKenzie, "Docked vs. Dockless Bike-sharing: Contrasting Spatiotemporal Patterns (Short Paper)," Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH, Wadern/Saarbruecken, Germany, 2018. 12. [12] J. Song, L. Zhang, Z. Qin, and M. A. Ramli, "Spatiotemporal evolving patterns of bike-share mobility networks and their associations with land-use conditions before and after the COVID-19 outbreak," Physica A: Statistical Mechanics and its Applications, vol. 592, p. 126819, 2022. [ DOI:10.1016/j.physa.2021.126819] 13. [13] Y. Yan, Y. Tao, J. Xu, S. Ren, and H. Lin, "Visual analytics of bike-sharing data based on tensor factorization," Journal of Visualization, vol. 21, no. 3, pp. 495-509, 2018. [ DOI:10.1007/s12650-017-0463-1] 14. [14] H. Tang, S. Fei, and X. Shi, "Revealing Travel Patterns from Dockless Bike-sharing Data Based on Tensor Decomposition," in Proceedings of the 12th International Symposium on Visual Information Communication and Interaction, 2019. [ DOI:10.1145/3356422.3356440] 15. [15] B. Du, M. Zhang, L. Zhang, R. Hu and D. Tao, "PLTD: Patch-Based Low-Rank Tensor Decomposition for Hyperspectral Images," in IEEE Transactions on Multimedia, vol. 19, no. 1, pp. 67-79, 2017. [ DOI:10.1109/TMM.2016.2608780] 16. [16] L. Sun and K. W. Axhausen, "Understanding urban mobility patterns with a probabilistic tensor factorization framework," Transportation Research Part B: Methodological, vol. 91, pp. 511-524, 2016. [ DOI:10.1016/j.trb.2016.06.011] 17. [17] S. Rabanser, O. Shchur, and S. Günnemann, "Introduction to Tensor Decompositions and their Applications in Machine Learning." arXiv, 2017. 18. [18] C. Lin, Q. Zhu, S. Guo, Z. Jin, Y.-R. Lin, and N. Cao, "Anomaly detection in spatiotemporal data via regularized non-negative tensor analysis," Data Mining and Knowledge Discovery, vol. 32, no. 4, pp. 1056-1073, 2018. [ DOI:10.1007/s10618-018-0560-3] 19. [19] J. An, Y. Song, Y. Guo, X. Ma, and X. Zhang, "Tensor Discriminant Analysis via Compact Feature Representation for Hyperspectral Images Dimensionality Reduction," Remote Sensing, vol. 11, no. 15, p. 1822, 2019. [ DOI:10.3390/rs11151822]
|