[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
داوران::
ثبت نام و اشتراک::
تماس با ما::
تسهیلات پایگاه::
بایگانی مقالات زیر چاپ::
آمار نشریه::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
آمار سایت
مقالات منتشر شده: 324
نرخ پذیرش: 63.1
نرخ رد: 36.9
میانگین داوری: 208 روز
میانگین انتشار: 345 روز
..
:: دوره 10، شماره 3 - ( 11-1401 ) ::
جلد 10 شماره 3 صفحات 141-121 برگشت به فهرست نسخه ها
ارزیابی شاخص‌های سنجش از دوری پایش خشکسالی با استفاده از رگرسیون بردار پشتیبان و مدل‌های جنگل تصادفی (مطالعه موردی: شهرستان مریوان)
جمال سیّدی قلدره ، سلمان احمدی* ، مهدی غلام نیا
دانشگاه کردستان
چکیده:   (1964 مشاهده)
خشکسالی به عنوان پدیده‌ای طبیعی و اقلیمی همه ساله در مناطق وسیعی در سراسر جهان رخ میدهد و وقوع آن ناشی از کمبود بارندگی و افزایش تبخیر و تعرق در دمای بالا است. هدف پژوهش حاضر ارزیابی سنجش از دور در پایش خشکسالی برای شهرستان مریوان و تجزیه و تحلیل توزیع مکانی - زمانی شرایط خشکسالی و شناسایی شدت خشکسالی است. در این مطالعه با استفاده از شاخص­های مختلف خشکسالی تولید شده از داده‌های ماهواره­ای مادیس و TRMM که از بسترگوگل ارث انجین استخراج شده­اند، شرایط خشکسالی در شهرستان مریوان  از ماه‌های فوریه تا نوامبر برای سال­های 2001 تا 2017 مورد تجزیه و تحلیل قرار گرفته است. همچنین شاخص‌های سنجش از دوری مانند شاخص تفاضل نرمال شده پوشش گیاهی، شاخص وضعیت پوشش گیاهی، شاخص وضعیت دما، شاخص پوشش گیاهی بهبود یافته، شاخص تبخیر و تعرق و شاخص وضعیت بارندگی به عنوان متغیرهای مستقل انتخاب گردیدند. بعلاوه شاخص استاندارد بارندگی حاصل از داده‌های هواشناسی نیز به عنوان متغیر وابسته برای ارزیابی شرایط خشکسالی مورد استفاده قرار گرفت. در ادامه جهت مدلسازی شاخص خشکسالی از دو روش­ مرسوم یادگیری ماشین شامل جنگل تصادفی و رگرسیون بردار پشتیبان استفاده شده است. نتایج مدل‌سازی با استفاده از الگوریتم رگرسیون بردار پشتیبان نشان­دهنده ضریب تبیین 88/0 و مجذور میانگین مربعات خطا 313/0 بین شاخص­های خشکسالی حاصل از داده­های ماهواره­ای و نیز اطلاعات ایستگاه­های زمینی، می باشد. همچنین نتایج مدل جنگل تصادفی با مقادیر ضریب تبیین 909/0 و مجذور میانگین مربعات خطا 259/0 بیانگر کارایی بالای این مدل است. در نهایت نتایج تحقیق نشان می­دهد که شاخص‌های سنجش از دوریPCI, ET, EVI, NDVI به ترتیب بیش‌ترین همبستگی را با شاخص هواشناسی داشته­اند.
 
واژه‌های کلیدی: خشکسالی، تصاویر سنجش از دور، جنگل تصادفی، رگرسیون بردار پشتیبان
متن کامل [PDF 1506 kb]   (821 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: سنجش از دور
دریافت: 1401/6/16 | پذیرش: 1401/10/27 | انتشار: 1401/11/17
فهرست منابع
1. [1] S.M. Quiring, "Monitoring Drought: An Evaluation of Meteorological Drought Indices", Geography Compass, Vol. 1, pp. 64-88, 2009.
2. [2] H. Sun, Y. Chen, and H. Sun, "Comparisons and classification system of typical remote sensing indexes for agricultural drought", Transactions of the Chinese Society of Agricultural Engineering, Vol. 28, pp. 147-54, 2012.
3. [3] H. West, N. Quinn, and M. Horswell, "Remote Sensing of Environment Remote sensing for drought monitoring & impact assessment : Progress, past challenges and future opportunities", Remote Sensing of Environment, Vol. 232, pp. 111291, 2019.
4. [4] T.B. Mckee, N.J. Doesken, and J. Kleist, "The relationship of drought frequency and duration to time scales", Proceedings of the 8th Conference on Applied Climatology, Boston, USA, 1993.
5. [5] M.J. Hayes, M.D. Svoboda, D.A. Wiihite, and O.V. Vanyarkho, "Monitoring the 1996 Drought Using the Standardized Precipitation Index", Bulletin of the American meteorological society, Vol. 80(3), pp. 429-438, 1999. https://doi.org/10.1175/1520-0477(1999)080<0429:MTDUTS>2.0.CO;2 [DOI:10.1175/1520-0477(1999)0802.0.CO;2]
6. [6] H. Karimi, "Studying the Effect of Drought on Vegetation Using MODIS Data (case study: Kurdistan Province)", M.Sc. Thesis, Faculty of Human Sciences at University of Zanjan, 2009 (Persian)
7. [7] M. Gholamnia, R. Khandan, S. Bonafoni, and A. Sadeghi, "Spatiotemporal analysis of MODIS NDVI in the semi-arid region of Kurdistan (Iran)", Remote Sensing, Vol. 11, pp. 8-12, 2011.
8. [8] S. Park, J. Im, E. Jang, and J. Rhee, "Drought assessment and monitoring through blending of multi-sensor indices using machine learning approaches for different climate regions", Agricultural and Forest Meteorology, Vol. 216, pp. 157-69, 2016.
9. [9] S.S. Park, J. Im, S.S. Park, and J. Rhee, "Drought monitoring using high resolution soil moisture through multi-sensor satellite data fusion over the Korean peninsula", Agricultural and Forest Meteorology, Vol. 237, pp. 257-69, 2017.
10. [10] M.R. Alizadeh, and M.R. Nikoo, "A fusion-based methodology for meteorological drought estimation using remote sensing data", Remote sensing of environment, Vol. 211, pp. 229-47, 2018.
11. [11] P. Feng, B. Wang, D.L. Liu, and Q. Yu, "Machine learning-based integration of remotely-sensed drought factors can improve the estimation of agricultural drought in South-Eastern Australia", Agricultural Systems, Vol. 173, pp. 303-16, 2019.
12. [12] B. Sun, J. Qian, X. Chen, and Q. Zhou, "Comparison and Evaluation of Remote Sensing Indices for Agricultural Drought Monitoring over Kazakhstan", The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 3, pp. 899-903, 2020.
13. [13] S. Mehravar, M. Amani, A. Moghimi, F. Dadrass, and S.M. Mirmazloumi, "Temperature-Vegetation-soil Moisture-Precipitation Drought Index (TVMPDI); 21-Year Drought Monitoring in Iran using Satellite Imagery within Google Earth Engine", Advances in Space Research, Vol. 68 (11), pp. 4573-4593, 2021.
14. [14] F.A. Prodhan, J. Zhang, F. Yao, L. Shi, T. Prasad, and P. Sharma, "Deep Learning for Monitoring Agricultural Drought in South Asia Using Remote Sensing Data", Remote Sensing, Vol. 13 (9), 1575, 2021.
15. [15] K. Soleimani, S. Darvishi, F. Shokrian, "Analysis of Agricultural Drought using Remote Sensing Indexes (case study: Marivan city)", The Journal of RS and GIS for Natural Resources, Vol. 10(2), pp. 15-33, 2019 (Persian)
16. [16] D. Zuo, S. Cai, Z. Xu, D. Peng, G. Kan, and W. Sun, "Assessment of meteorological and agricultural droughts using in-situ observations and remote sensing data", Agricultural Water Management, Vol. 222, pp. 125-38, 2019.
17. [17] A. Poortinga, N. Clinton, D. Saah, P. Cutter, F. Chishtie, and K.N. Markert, "An operational before-after-control-impact (BACI) designed platform for vegetation monitoring at planetary scale". Remote Sensing, Vol. 10(5), 760, 2018.
18. [18] A. Huete, C. Justice, and H. Liu, "Development of Vegetation and Soil Indices for MODIS-EOS", Remote Sensing of Environment, Vol. 234, pp. 224-34, 1994.
19. [19] A. Huete, K. Didan, T. Miura, E.P. Rodriguez, X. Gao, and L.G. Ferreira, "Overview of the radiometric and biophysical performance of the MODIS vegetation indices", Remote Sensing of Environment, Vol. 83, pp. 195-213, 2002.
20. [20] M. Belgiu, and L. Drăgu, "Random forest in remote sensing: A review of applications and future directions", ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 114, pp. 24-31, 2016.
21. [21] F.N. Kogan, "Global Drought Watch from Space", Bulletin of the American Meteorological Society, Vol. 78, pp. 621-36, 1994. https://doi.org/10.1175/1520-0477(1997)078<0621:GDWFS>2.0.CO;2 [DOI:10.1175/1520-0477(1997)0782.0.CO;2]
22. [22] R. Shen, A. Huang, B. Li, and J. Guo, "Construction of a drought monitoring model using deep learning based on multi-source remote sensing data", International Journal of Applied Earth Observation and Geoinformation, Vol. 79(219), pp. 48-57, 2019.
23. [23] S. Aksoy, O. Gorucu, and E. Sertel, "Drought monitoring using MODIS derived indices and google earth engine platform", 2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics 2019), IEEE, 2019.
24. [24] N. Oceanic, "Application of Vegetation Index and Brightness Temperature for Drought Detection", Advances in Space Research, Vol. 15(11), pp. 91-100, 1995.
25. [25] R.P. Singh, S. Roy, and F. Kogan, "Vegetation and temperature condition indices from NOAA AVHRR data for drought monitoring over India", International journal of remote sensing, Vol. 24(22), pp. 4393-402, 2003.
26. [26] M.C. Anderson, J.M. Norman, J.R. Mecikalski, J.A. Otkin, and W.P. Kustas, "A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 2. Surface moisture climatology", Journal of Geophysical Research Atmospheres, Vol. 112(11), pp. 1-13, 2007.
27. [27] R.G. Allen, L.S. Pereira, D. Raes, and M. Smith, "Crop evapotraspiration guidelines for computing crop water requirements", FAO Irrigation & drainage Paper 56, Roma: FAO, Food and Agriculture Organization of the United Nations, 1998.
28. [28] T. Jiang, J.L. Gradus, and A.J. Rosellini, "upervised machine learning: a brief primer", Behavior Therapy, Vol. 51, pp. 675-687, 2020.
29. [29] W. Yu, M. Shao, M. Ren, H. Zhou, Z. Jiang, and D. Li, "Analysis on spatial and temporal characteristics drought of Yunnan Province", Acta Ecologica Sinica, Vol. 33(6), 3pp. 17-24, 2013.
30. [30] A. Elnashar, H. Zeng, B. Wu, N. Zhang, F. Tian, and M. Zhang, "Downscaling TRMM monthly precipitation using google earth engine and google cloud computing", Remote Sensing, Vol. 12(23), pp. 1-22, 2020.
31. [31] H. Han, J. Bai, J. Yan, H. Yang, and G. Ma, "A combined drought monitoring index based on multi-sensor remote sensing data and machine learning", Geocarto International, Vol. 36 (10), pp. 1161-1177, 2019.
32. [32] E. Boser, N. Vapnik, I.M. Guyon, and T.B. Laboratories, "A Training Algorithm Margin for Optimal Classifiers", Proceedings of the fifth annual workshop on Computational learning theory, Vol. 32, pp. 144-52, 2002.
33. [33] C. Cortes, and V. Vapnik, "Support-vector networks". Machine learning, Vol. 20, pp. 273-97, 1995.
34. [34] Z. Nikraftar, M. Hasanlou, and M. Esmaeilzadeh, "Novel snow depth retrieval method using time series SSMI passive microwave imagery". International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, Vol. 41, pp. 525-30. 2016.
35. [35] A.J. Smola, and BSCH. Olkopf, "A tutorial on support vector regression", Statistics and Computing, Vol. 14 (3), pp. 199-222, 2004.
36. [36] X. Zhou, X. Zhu, Z. Dong, W. Guo, "Science Direct Estimation of biomass in wheat using random forest regression algorithm and remote sensing data", The Crop Journal, Vol. 4(3), pp. 1-8, 2016.
37. [37] L. Breiman, "Random Forests", Machine learning, Vol. 45, pp. 5-32, 2001.
38. [38] E. Izquierdo-verdiguier, and R. Zurita-milla, "An evaluation of Guided Regularized Random Forest for classi fi cation and regression tasks in remote sensing", Internatinal Journal of Applied Earth Observation and Geoinformation, Vol. 88, pp. 102051, 2020
39. [39] G. Tsakiris, and H. Vangelis, "Towards a Drought Watch System based on spatial SPI", Water Resources Management, Vol. 18(1), pp. 1-12, 2004.
40. [40] P.F. Smith, S. Ganesh, and P. Liu, "A comparison of random forest regression and multiple linear regression for prediction in neuroscience", Journal of Neuroscience Methods, Vol. 220(1), pp. 85-91, 2013.
41. [41] Y. Yang, C. Cao, X. Pan, X. Li, and X. Zhu, "Downscaling land surface temperature in an arid area by using multiple remote sensingindices with random forest regression", Remote Sensing, Vol. 9(8), pp. 789, 2017.
42. [42] H. Tamiminia, B. Salehi, M. Mahdianpari, L. Quackenbush, S. and Adeli, B. Brisco, "Google Earth Engine for geo-big data applications: A meta-analysis and systematic review", ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 164, pp. 152-70, 2020.
ارسال پیام به نویسنده مسئول



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Seyedi Ghaldareh J, Ahmadi S, Gholamnia M. Evaluation of remote sensing-based drought monitoring indexes using support vector regression and random forest models (Case study: Marivan city). jgit 2023; 10 (3) :121-141
URL: http://jgit.kntu.ac.ir/article-1-891-fa.html

سیّدی قلدره جمال، احمدی سلمان، غلام نیا مهدی. ارزیابی شاخص‌های سنجش از دوری پایش خشکسالی با استفاده از رگرسیون بردار پشتیبان و مدل‌های جنگل تصادفی (مطالعه موردی: شهرستان مریوان). مهندسی فناوری اطلاعات مکانی. 1401; 10 (3) :121-141

URL: http://jgit.kntu.ac.ir/article-1-891-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 10، شماره 3 - ( 11-1401 ) برگشت به فهرست نسخه ها
نشریه علمی-پژوهشی مهندسی فناوری اطلاعات مکانی Engineering Journal of Geospatial Information Technology
Persian site map - English site map - Created in 0.06 seconds with 38 queries by YEKTAWEB 4660