1. [1] Girisha, S., MM, M. P., Verma, U., & Pai, R. M., 2019. "Semantic segmentation of uav aerial videos using convolutional neural networks." IEEE Second International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), pp. 21-27. 2. [2] Yuan, X., Shi, J., & Gu, L., 2021. "A review of deep learning methods for semantic segmentation of remote sensing imagery." Expert Systems with Applications, 169, pp. 114417. [ DOI:10.1016/j.eswa.2020.114417] 3. [3] Girisha, S., Verma, U., Pai, M. M., & Pai, R. M., 2021. "Uvid-net: Enhanced semantic segmentation of uav aerial videos by embedding temporal information." IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, pp. 4115-4127. [ DOI:10.1109/JSTARS.2021.3069909] 4. [4] Yao, H., Qin, R., & Chen, X., 2019. "Unmanned aerial vehicle for remote sensing applications-A review." Remote Sensing, 11(12), pp. 1443. [ DOI:10.3390/rs11121443] 5. [5] Noor, N. M., Abdullah, A., & Hashim, M., 2018. "Remote sensing UAV/drones and its applications for urban areas: A review." Earth and environmental science, 169(1), pp. 012003. [ DOI:10.1088/1755-1315/169/1/012003] 6. [6] Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., & Terzopoulos, D., 2021. "Image segmentation using deep learning: A survey." IEEE transactions on pattern analysis and machine intelligence, 44(7), pp. 3523-3542. [ DOI:10.1109/TPAMI.2021.3059968] 7. [7] Reza, M. N., Na, I. S., Baek, S. W., & Lee, K. H., 2019. "Rice yield estimation based on K-means clustering with graph-cut segmentation using low-altitude UAV images." Biosystems engineering, 177, pp. 109-121. [ DOI:10.1016/j.biosystemseng.2018.09.014] 8. [8] Azhar, R., Tuwohingide, D., Kamudi, D., & Suciati, N., 2015. Batik image classification using SIFT feature extraction, bag of features and support vector machine. Procedia Computer Science, 72, pp. 24-30. [ DOI:10.1016/j.procs.2015.12.101] 9. [9] Clausi, D. A., 2002. "An analysis of co-occurrence texture statistics as a function of grey level quantization." Canadian Journal of remote sensing, 28(1), pp. 45-62. [ DOI:10.5589/m02-004] 10. [10] Dalal, N., & Triggs, B., 2005. "Histograms of oriented gradients for human detection." IEEE computer society conference on computer vision and pattern recognition (CVPR'05), 1, pp. 886-893). 11. [11] Hasani, H., Samadzadegan, F., & Reinartz, P., 2017. "A metaheuristic feature-level fusion strategy in classification of urban area using hyperspectral imagery and LiDAR data." European Journal of Remote Sensing, 50(1), pp. 222-236. [ DOI:10.1080/22797254.2017.1314179] 12. [12] Mohammadpour, P., Viegas, D. X., & Viegas, C., 2022. "Vegetation Mapping with Random Forest Using Sentinel 2 and GLCM Texture Feature-A Case Study for Lousã Region, Portugal." Remote Sensing, 14(18), pp. 4585. [ DOI:10.3390/rs14184585] 13. [13] Sturgess, P., Alahari, K., Ladicky, L., & Torr, P. H., 2009." Combining appearance and structure from motion features for road scene understanding." BMVC-British Machine Vision Conference, United Kingdom. [ DOI:10.5244/C.23.62] 14. [14] Laliberte, A. S., & Rango, A., 2009. "Texture and scale in object-based analysis of subdecimeter resolution unmanned aerial vehicle (UAV) imagery." IEEE Transactions on Geoscience and Remote Sensing, 47(3), pp. 761-770. [ DOI:10.1109/TGRS.2008.2009355] 15. [15] Zhang, C., Wang, L., & Yang, R., 2010. Semantic segmentation of urban scenes using dense depth maps. 11th European Conference on Computer Vision, Greece, Proceedings, Part IV 11, pp. 708-721. [ DOI:10.1007/978-3-642-15561-1_51] 16. [16] Moranduzzo, T., & Melgani, F., 2014. "Detecting cars in UAV images with a catalog-based approach." IEEE Transactions on Geoscience and remote sensing, 52(10), pp. 6356-6367. [ DOI:10.1109/TGRS.2013.2296351] 17. [17] Vezhnevets, A., Ferrari, V., & Buhmann, J. M., 2011. "Weakly supervised semantic segmentation with a multi-image model." International conference on computer vision, pp. 643-650. [ DOI:10.1109/ICCV.2011.6126299] 18. [18] Qi, M., Shi, Y., Qi, Y., Ma, C., Yuan, R., Wu, D., & Shen, Z. J., 2023. "A practical end-to-end inventory management model with deep learning." Management Science, 69(2), pp. 759-773. [ DOI:10.1287/mnsc.2022.4564] 19. [19] Ma, L., Liu, Y., Zhang, X., Ye, Y., Yin, G., & Johnson, B. A., 2019. "Deep learning in remote sensing applications: A meta-analysis and review." ISPRS journal of photogrammetry and remote sensing, 152, pp. 166-177. [ DOI:10.1016/j.isprsjprs.2019.04.015] 20. [20] Yosinski, J., Clune, J., Bengio, Y., & Lipson, H., 2014. "How transferable are features in deep neural networks?" Advances in neural information processing systems, 27. 21. [21] Oquab, M., Bottou, L., Laptev, I., & Sivic, J., 2014. "Learning and transferring mid-level image representations using convolutional neural networks." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1717-1724. [ DOI:10.1109/CVPR.2014.222] 22. [22] J. Senthilnath, N. Varia, A. Dokania, G. Anand, and J. A. Benediktsson, "Deep TEC: Deep transfer learning with ensemble classifier for road extraction from UAV imagery," Remote Sensing, vol. 12, no. 2, pp. 245, 2020. [ DOI:10.3390/rs12020245] 23. [23] F. G. Zanjani, and M. van Gerven, "Improving semantic video segmentation by dynamic scene integration." 24. [24] X. Wei, K. Fu, X. Gao, M. Yan, X. Sun, K. Chen, and H. Sun, "Semantic pixel labelling in remote sensing images using a deep convolutional encoder-decoder model," Remote Sensing Letters, vol. 9, no. 3, pp. 199-208, 2018. [ DOI:10.1080/2150704X.2017.1410291] 25. [25] Y. Liu, L. Gross, Z. Li, X. Li, X. Fan, and W. Qi, "Automatic building extraction on high-resolution remote sensing imagery using deep convolutional encoder-decoder with spatial pyramid pooling," IEEE Access, vol. 7, pp. 128774-128786, 2019. [ DOI:10.1109/ACCESS.2019.2940527] 26. [26] Y. Lyu, G. Vosselman, G.-S. Xia, A. Yilmaz, and M. Y. Yang, "UAVid: A semantic segmentation dataset for UAV imagery," ISPRS Journal of Photogrammetry and Remote Sensing, vol. 165, pp. 108-119, 2020. [ DOI:10.1016/j.isprsjprs.2020.05.009] 27. [27] A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez, P. Martinez-Gonzalez, and J. Garcia-Rodriguez, "A survey on deep learning techniques for image and video semantic segmentation," Applied Soft Computing, vol. 70, pp. 41-65, 2018. [ DOI:10.1016/j.asoc.2018.05.018] 28. [28] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, "A survey on deep transfer learning." pp. 270-279. [ DOI:10.1007/978-3-030-01424-7_27] 29. [29] B. Cui, X. Chen, and Y. Lu, "Semantic segmentation of remote sensing images using transfer learning and deep convolutional neural network with dense connection," Ieee Access, vol. 8, pp. 116744-116755, 2020. [ DOI:10.1109/ACCESS.2020.3003914] 30. [30] B. Yu, L. Yang, and F. Chen, "Semantic segmentation for high spatial resolution remote sensing images based on convolution neural network and pyramid pooling module," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 11, no. 9, pp. 3252-3261, 2018. [ DOI:10.1109/JSTARS.2018.2860989] 31. [31] X. Zhang, Z. Xiao, D. Li, M. Fan, and L. Zhao, "Semantic segmentation of remote sensing images using multiscale decoding network," IEEE Geoscience and Remote Sensing Letters, vol. 16, no. 9, pp. 1492-1496, 2019. [ DOI:10.1109/LGRS.2019.2901592] 32. [32] T. Panboonyuen, K. Jitkajornwanich, S. Lawawirojwong, P. Srestasathiern, and P. Vateekul, "Semantic segmentation on remotely sensed images using an enhanced global convolutional network with channel attention and domain specific transfer learning," Remote Sensing, vol. 11, no. 1, pp. 83, 2019. [ DOI:10.3390/rs11010083] 33. [33] Y. Liu, Y. Kong, B. Zhang, X. Peng, and H. Leung, "A Novel Deep Transfer Learning Method for Airborne Remote Sensing Semantic Segmentation Based on Fully Convolutional Network." pp. 13-19. 34. [34] L. Zhang, M. Wang, Y. Fu, and Y. Ding, "A Forest Fire Recognition Method Using UAV Images Based on Transfer Learning," Forests, vol. 13, no. 7, pp. 975, 2022. [ DOI:10.3390/f13070975]
|