1. [1] Lee, N., et al. Desire,"Distant future prediction in dynamic scenes with interacting agents", in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017. [ DOI:10.1109/CVPR.2017.233] 2. [2] Vemula, A., K. Muelling, and J. Oh. Social attention, "Modeling attention in human crowds", in Proceedings of the IEEE international Conference on Robotics and Automation (ICRA), 2018. [ DOI:10.1109/ICRA.2018.8460504] 3. [3] Combs, T.S., et al., "Automated vehicles and pedestrian safety: exploring the promise and limits of pedestrian detection", American journal of preventive medicine. 56(1): p. 1-7, 2019. [ DOI:10.1016/j.amepre.2018.06.024] 4. [4] Manh, H. and G.J.a.p.a. Alaghband, "Scene-lstm: A model for human trajectory prediction", arXiv preprint arXiv:1808.04018,2018. 5. [5] Rasouli, A. and J.K.J.I.T.o.I.T.S. Tsotsos, "Autonomous vehicles that interact with pedestrians: A survey of theory and practice", Proceedings of the IEEE transactions on intelligent transportation systems, 21(3): p. 900-91, 2019. [ DOI:10.1109/TITS.2019.2901817] 6. [6] Yazdan, R., M.J.I.J.o.P. Varshosaz, and R. Sensing, "Improving traffic sign recognition results in urban areas by overcoming the impact of scale and rotation", ISPRS Journal of Photogrammetry and Remote Sensing, 171: p. 18-35, 2021. [ DOI:10.1016/j.isprsjprs.2020.10.003] 7. [7] Shi, X., et al., "Pedestrian trajectory prediction in extremely crowded scenarios", Sensors, 19(5): p. 1223,2019 [ DOI:10.3390/s19051223] 8. [8] Xue, H., D.Q. Huynh, and M. Reynolds, "SS-LSTM: A hierarchical LSTM model for pedestrian trajectory prediction", in Proceeding of the IEEE Winter Conference on Applications of Computer Vision (WACV). 2018. [ DOI:10.1109/WACV.2018.00135] 9. [9] Fernando, T., et al., Soft+ hardwired attention, "An lstm framework for human trajectory prediction and abnormal event detection", Neural networks, 108: p. 466-478, 2018 [ DOI:10.1016/j.neunet.2018.09.002] 10. [10] Kalman, R.E., "A new approach to linear filtering and prediction problems", published in Journal of Basic Engineering, 82 (Series D): 35-45. 1960. [ DOI:10.1115/1.3662552] 11. [11] Thrun, S., W. Burgard, and D.J.C. Fox, MA, USA, "Probabilistic Robotics-Intelligent Robotics and Autonomous Agents Series", The MIT Press. 2006. 12. [12] Williams, C.K., "Prediction with Gaussian processes: From linear regression to linear prediction and beyond, in Learning in graphical models", Springer Netherlands. p. 599-621, 1998 [ DOI:10.1007/978-94-011-5014-9_23] 13. [13] Voulodimos, A., et al., "Deep learning for computer vision: A brief review", Computational intelligence and neuroscience, 2018. [ DOI:10.1155/2018/7068349] 14. [14] Pascanu, R., et al., "How to construct deep recurrent neural networks", 2013. 15. [15] Hochreiter, S., et al., "Gradient flow in recurrent nets: the difficulty of learning long-term dependencies", A field guide to dynamical recurrent neural networks. IEEE Press,2001 16. [16] Hochreiter, S. and J.J.N.c. Schmidhuber, "Long short-term memory", Neural computation, p. 1735-1780, 1997 [ DOI:10.1162/neco.1997.9.8.1735] 17. [17] Bahdanau, D., K. Cho, and Y.J.a.p.a. Bengio, "Neural machine translation by jointly learning to align and translate", arXiv preprint arXiv:1409.0473, 2014. 18. [18] Becker, S., et al., "An evaluation of trajectory prediction approaches and notes on the trajnet benchmark", arXiv preprint arXiv:1805.07663, 2018. 19. [19] Alahi, A., et al. "Social lstm: Human trajectory prediction in crowded spaces", in Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 961-971, 2016. [ DOI:10.1109/CVPR.2016.110] 20. [20] Alahi, A., et al.,"Learning to predict human behavior in crowded scenes, in Group and Crowd Behavior for Computer Vision", InGroup and Crowd Behavior for Computer Vision, Academic Press, Elsevier. p. 183-207, 2017 [ DOI:10.1016/B978-0-12-809276-7.00011-4] 21. [21] Heo, D., J.Y. Nam, and B.C.J.S. Ko, "Estimation of Pedestrian Pose Orientation Using Soft Target Training Based on Teacher-Student Framework", Sensors, p. 1147, 2019 [ DOI:10.3390/s19051147] 22. [22] Collins, R.T. "Mean-shift blob tracking through scale space", in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. 23. [23] Gandhi, T. and M.M. Trivedi. "Image based estimation of pedestrian orientation for improving path prediction", in Proceedings of the IEEE Intelligent Vehicles Symposium, 2008. [ DOI:10.1109/IVS.2008.4621257] 24. [24] Simo-Serra, E., et al. "Single image 3D human pose estimation from noisy observations", in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2012. [ DOI:10.1109/CVPR.2012.6247988] 25. [25] Quintero, R., et al. "Pedestrian path prediction using body language traits", in Proceedings of the IEEE Intelligent Vehicles Symposium Proceedings. 2014. [ DOI:10.1109/IVS.2014.6856498] 26. [26] Kim, S., et al., Brvo: Predicting pedestrian trajectories using velocity-space reasoning. The International Journal of Robotics Research, 34(2), p201-17, 2015. [ DOI:10.1177/0278364914555543] 27. [27] Bera, A., et al. "GLMP-realtime pedestrian path prediction using global and local movement patterns", in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). 2016. [ DOI:10.1109/ICRA.2016.7487768] 28. [28] Ma, W.-C., et al. "Forecasting interactive dynamics of pedestrians with fictitious play", in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017. [ DOI:10.1109/CVPR.2017.493] 29. [29] Ahmadabadian, A.H., et al., "An automatic 3D reconstruction system for texture-less objects", Robotics and Autonomous Systems, 117: p. 29-39, 2019. [ DOI:10.1016/j.robot.2019.04.001] 30. [30] Ren, S., et al., "Faster r-cnn: Towards real-time object detection with region proposal networks", IEEE transactions on pattern analysis and machine intelligence, 39(6): p. 1137-1149, 2016 [ DOI:10.1109/TPAMI.2016.2577031] 31. [31] Shafiee, M.J., et al., Fast YOLO, "A fast you only look once system for real-time embedded object detection in video", arXiv preprint arXiv:1709.05943, 2017. [ DOI:10.15353/vsnl.v3i1.171] 32. [32] Graves, A.J.a.p.a., "Generating sequences with recurrent neural networks", arXiv preprint arXiv:1308.0850, 2013.
|