1. [1] L. Zhao, J. Liu, S. Peters, J. Li, S. Oliver and N. Mueller, "Investigating the Impact of Using IR Bands on Early Fire Smoke Detection from Landsat Imagery with a Lightweight CNN Model", Remote Sensing, Vol. 14(3047), 2022. DOI: [ DOI:10.3390/rs14133047] 2. [2] S. Miao, H. Lin, H. Gao and L. Dong, "Strip Smoke and Cloud Recognition in Satellite Image", 2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Datong, China, 2016, pp. 303-307, DOI: 10.1109/CISP-BMEI.2016.7852726. 3. [3] X. Li, J. Wang, W. Song, J. Ma, L. Telesca, and Y. Zhang, "Automatic smoke detection in MODIS satellite data based on K-means clustering and fisher linear discrimination". PE&RS, Photogrammetric Engineering & Remote Sensing, Vol. 80(10), pp. 971-982, 2014, DOI: [ DOI:10.14358/PERS.80.10.971] 4. [4] N. Pahlevan, A. Mangin, S. V. Balasubramanian, B. Smith, K. Alikas, K. Arai, C. Barbosa, S. Bélanger, C. Binding, M. Bresciani, C. Giardino, D. Gurlin, Y. Fan, T. Harmel, P. Hunter, J. Ishikaza, S. Kratzer, M. K. Lehmann, M. Ligi, R. Ma, F. R. Martin-Lauzer, L. Olmanson, N. Oppelt, Y. Pan, S. Peters, N. Reynaud, L. A. de Carvalho, S. Simis, E. Spyrakos, F. Steinmetz, K. Stelzer, S. Sterckx, Th. Tormos, A. Tyler, Q. Vanhellemont and M. Warren, "ACIX-Aqua: A global assessment of atmospheric correction methods for Landsat-8 and Sentinel-2 over lakes, rivers, and coastal waters." Remote Sensing of Environment, 258, 112366, 2021, DOI; [ DOI:10.1016/j.rse.2021.112366] 5. [5] A. S., Mahiny and B. J., Turner, "A comparison of four common atmospheric correction methods," Photogrammetric Engineering & Remote Sensing, Vol. 73(4), pp. 361-368, 2007. DOI: [ DOI:10.14358/PERS.73.4.361] 6. [6] M. Xu, X. Jia, M. Pickering and D. Roberts, "Spectral unmixing for fire smoke detection and removal," 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 2016, pp. 806-808, DOI: 10.1109/IGARSS.2016.7729203. 7. [7] S. Khetkeeree, B. Petchthaweetham, S. Liangrocapart and S. Srisuk, "Sentinel-2 Image Dehazing using Correlation between Visible and Infrared Bands," 2020 8th International Electrical Engineering Congress (iEECON), Chiang Mai, Thailand, 2020, pp. 1-4, DOI: 10.1109/iEECON48109.2020.229585. 8. [8] A. Makarau, R. Richter, R. Müller and P. Reinartz, "Haze Detection and Removal in Remotely Sensed Multispectral Imagery," in IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 9, pp. 5895-5905, Sept. 2014, DOI: 10.1109/TGRS.2013.2293662. 9. [9] T.-P, Zhao, S. Ackerman, and W. Guo. "Dust and Smoke Detection for Multi-Channel Imagers," Remote Sensing, vol. 2, no. 10, pp. 2347-2368, 2010, DOI: 10.3390/rs2102347. 10. [10] J. Li, B.E. Carlson, Y.L. Yung, D. Lv, J. Hansen, J. E. Penner, H. Liao, V. Ramaswamy, R. A. Kahn, P. Zhang, O. Dubovik, A. Ding, A. A. Lacis, L. Zhang and Y. Dong, "Scattering and absorbing aerosols in the climate system," Nature Reviews Earth & Environment, Vol. 3, pp. 363-379, 2022, DOI: [ DOI:10.1038/s43017-022-00296-7] 11. [11] K. N. Liou and Y. Takano, "Light scattering by nonspherical particles: remote sensing and climatic implications". Atmospheric Research, Vol. 31(4), pp. 271-298, 1994, DOI: [ DOI:10.1016/0169-8095(94)90004-3] 12. [12] R. Richter, "Atmospheric correction of satellite data with haze removal including a haze/clear transition region," Computers & Geosciences, vol. 22, no. 6, pp. 675-681, 1996,DOI: 10.1016/0098-3004(96)00010-6 13. [13] S. Liang, H. Fang and M. Chen, "Atmospheric correction of Landsat ETM+ land surface imagery. I. Methods," in IEEE Transactions on Geoscience and Remote Sensing, vol. 39, no. 11, pp. 2490-2498, Nov. 2001, DOI: 10.1109/36.964986. 14. [14] C. -L. C. Huang and T. Munasinghe, "Exploring Various Applicable Techniques to Detect Smoke on the Satellite Images," 2020 IEEE International Conference on Big Data (Big Data), Atlanta, GA, USA, 2020, pp. 5703-5705, DOI: 10.1109/BigData50022.2020.9378466. 15. [15] AAA. Alkhatib, "A Review on Forest Fire Detection Techniques," International Journal of Distributed Sensor Networks, vol. 10, no. 3, 2014, DOI:10.1155/2014/597368. 16. [16] M. Xu, X. Jia and M. Pickering, "Cloud effects removal via sparse representation," IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 2015, pp. 605-608, 2015, DOI: 10.1109/IGARSS.2015.7325836. 17. [17] M. Fathi, M. Mokhtar Zade, A.R. Safdarinezhad, "An Automatic Detection of the Fire Smoke Through Multispectral Images," JGST, vol. 10, no. 1, pp. 145-157, 2020, URL: http://jgst.issge.ir/article-1-892-fa.html. 18. [18] I. C. Neagoe, C. Vaduva, C. and Datcu, M., "Haze and Smoke Removal for Visualization of Multispectral Images: A DNN Physics Aware Architecture," In 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, pp. 2102-2105, July, 2021, DOI: 10.1109/IGARSS47720.2021.9553735. 19. [19] H. Liu, J. Li, J. Du, B. Zhao, Y. Hu, D. Li, and Yu, W., "Identification of Smoke from Straw Burning in Remote Sensing Images with the Improved YOLOv5s Algorithm," Atmosphere, Vol. 13(6), 925, 2022, DOI: [ DOI:10.3390/atmos13060925] 20. [20] A. Dewangan, Y. Pande, H. W. Braun, F. Vernon, I. Perez, I. Altintas, G. W. Cottrell and M.H. Nguyen, "FIgLib & SmokeyNet: Dataset and deep learning model for real-time wildland fire smoke detection. Remote Sensing, 14(4), 1007, 2022, DOI: [ DOI:10.3390/rs14041007] 21. [21] B. Rasti, P. Scheunders, P. Ghamisi, G. Licciardi, and J. Chanussot, "Noise Reduction in Hyperspectral Imagery: Overview and Application," Remote Sensing, vol. 10, no. 3( 482), 2018, DOI: 10.3390/rs10030482 22. [22] L. Gao, Q. Du, B. Zhang, W. Yang and Y. Wu, "A Comparative Study on Linear Regression-Based Noise Estimation for Hyperspectral Imagery," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 6, no. 2, pp. 488-498, April 2013, DOI: 10.1109/JSTARS.2012.2227245.
|