[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
داوران::
ثبت نام و اشتراک::
تماس با ما::
تسهیلات پایگاه::
بایگانی مقالات زیر چاپ::
آمار نشریه::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
آمار سایت
مقالات منتشر شده: 335
نرخ پذیرش: 63.1
نرخ رد: 36.9
میانگین داوری: 208 روز
میانگین انتشار: 343 روز
..
:: دوره 12، شماره 4 - ( 12-1403 ) ::
جلد 12 شماره 4 صفحات 84-57 برگشت به فهرست نسخه ها
تحلیل و پهنه بندی جُرم در مناطق شهری با تلفیق داده های سنتی و اطلاعات مکانی کاربر ساخت
محمد هادی احمدی ، محمد طالعی*
دانشگاه صنعتی خواجه نصیرالدین طوسی
چکیده:   (692 مشاهده)
از میان جرایمی که در سطح معابر رخ می­ دهند برخی تابعی از فرم شهر و ویژگی­ های شبکه معابر از جمله نوع کاربری، قابلیت دید، روشنایی و غیره، هستند. این پارامتر­ها می­توانند مانع یا تسهیل­ کننده وقوع جرائم در سطح معابر شوند. برای بررسی این موضوع معمولاً از داده­ های سنتی تولید شده تحت نظارت سازمان‌های متولی از جمله سازمان نقشه‌برداری و یا شهرداری‌ها استفاده شده است، ولی امروزه با پیشرفت فناوری، منابع داده­ای دیگر تحت عنوان اطلاعات مکانی مردم­ گستر یا کاربر ساخت (VGI) در دسترس قرار گرفته است. این اطلاعات دارای مزایایی همچون سرعت به‌روزرسانی بالا و دسترسی بدون محدودیت هستند و با در اختیار داشتن داده‌های VGI و داده مربوط به جرائم، امکان انجام تحلیل‌های مختلف مکانی از جمله بررسی ارتباط میان فرم شهری و وقوع جرائم، فراهم می‌گردد. در این تحقیق داده­ های مرسوم سنتی با داده­ های مردم گستر ترکیب شده و ارتباط میان وقوع جرائم با پارامتر­های فرم کاربری­ها و معابر شهری، با استفاده از روش مدل‌سازی داده‌محور رگرسیون وزنی جغرافیایی-زمانی (GTWR) مورد بررسی قرار گرفته است. بر اساس تحلیل های عددی و تعداد و حجم داده­های مربوط به جرم که در فرآیند مدلسازی مورد استفاده قرار گرفت، روش GTWR به طور میانگین عملکردی با دقت در حدود 55 درصد در فرآیند پیش­بینی ارائه نمود. سپس موثرترین شاخص­­ها در وقوع جرائم شناسایی شده و با استفاده از آن، احتمال وقوع جرائم در معابر مختلف بر اساس شاخص­های تعیین شده در این تحقیق، تخمین زده شد. این اطلاعات به برنامه‌ریزان شهری کمک می‌کند تا در مرحله تهیه طرح­های شهری به ارزیابی ریسک احتمال وقوع جرائم، ناشی از نحوه تنظیم فرم کاربری­ها و معابر شهری، بپردازند و با ارائه سناریوهای مختلف در این خصوص، بهترین فرم شهری از دیدگاه پیشگیری از وقوع جرایم در معابر شهری را پیشنهاد دهند.
واژه‌های کلیدی: جُرم، اطلاعات مکانی کاربر ساخت، شاخص های فرم شهری، تحلیل فضای شهری، داده‌کاوی
متن کامل [PDF 2780 kb]   (92 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: سیستمهای اطلاعات مکانی (عمومی)
دریافت: 1402/7/12 | پذیرش: 1403/1/20 | انتشار الکترونیک پیش از انتشار نهایی: 1403/11/14 | انتشار: 1403/12/27
فهرست منابع
1. [1] D.-W. Sohn, "Residential crimes and neighbourhood built environment: Assessing the effectiveness of crime prevention through environmental design (CPTED)," Cities, vol. 52, pp. 86-93, 2016. [DOI:10.1016/j.cities.2015.11.023]
2. [2] J. S. Lee, S. Park, and S. Jung, "Effect of crime prevention through environmental design (CPTED) measures on active living and fear of crime," Sustainability, vol. 8, no. 9, p. 872, 2016. [DOI:10.3390/su8090872]
3. [3] T. Crow, "Crime prevention through environmental design," ed: Boston: Butter Worth-Heiman, 2000.
4. [4] S. P. Carter, S. L. Carter, and A. L. Dannenberg, "Zoning out crime and improving community health in Sarasota, Florida:"crime prevention through environmental design"," American Journal of Public Health, vol. 93, no. 9, pp. 1442-1445, 2003. [DOI:10.2105/AJPH.93.9.1442]
5. [5] P. M. Cozens, "Sustainable urban development and crime prevention through environmental design for the British city. Towards an effective urban environmentalism for the 21st century," Cities, vol. 19, no. 2, pp. 129-137, 2002. [DOI:10.1016/S0264-2751(02)00008-2]
6. [6] S. Kajalo and A. Lindblom, "Creating a safe and pleasant shopping environment: A retailer's view," Property Management, vol. 33, no. 3, pp. 275-286, 2015. [DOI:10.1108/PM-10-2014-0042]
7. [7] S. Ballintyne, K. Pease, and V. McLaren, Secure foundations: key issues in crime prevention, crime reduction and community safety. Institute for Public Policy Research, 2000.
8. [8] B. Hillier, "Can streets be made safe?," Urban design international, vol. 9, pp. 31-45, 2004. [DOI:10.1057/palgrave.udi.9000079]
9. [9] M. Saraiva and P. Pinho, "A comprehensive and accessible approach to crime prevention in the planning and design of public spaces," Urban Design International, vol. 16, pp. 213-226, 2011. [DOI:10.1057/udi.2011.7]
10. [10] L. Summers and S. D. Johnson, "Does the configuration of the street network influence where outdoor serious violence takes place? Using space syntax to test crime pattern theory," Journal of quantitative criminology, vol. 33, pp. 397-420, 2017. [DOI:10.1007/s10940-016-9306-9]
11. [11] Y. Xu, C. Fu, E. Kennedy, S. Jiang, and S. Owusu-Agyemang, "The impact of street lights on spatial-temporal patterns of crime in Detroit, Michigan," Cities, vol. 79, pp. 45-52, 2018. [DOI:10.1016/j.cities.2018.02.021]
12. [12] G. Boeing, "Measuring the complexity of urban form and design," Urban Design International, vol. 23, no. 4, pp. 281-292, 2018. [DOI:10.1057/s41289-018-0072-1]
13. [13] C. Ye, Y. Chen, and J. Li, "Investigating the influences of tree coverage and road density on property crime," ISPRS International Journal of Geo-Information, vol. 7, no. 3, p. 101, 2018. [DOI:10.3390/ijgi7030101]
14. [14] L. Sun et al., "Explore the Correlation between Environmental Factors and the Spatial Distribution of Property Crime," ISPRS International Journal of Geo-Information, vol. 11, no. 8, p. 428, 2022. [DOI:10.3390/ijgi11080428]
15. [15] L. G. Alves, H. V. Ribeiro, E. K. Lenzi, and R. S. Mendes, "Distance to the scaling law: a useful approach for unveiling relationships between crime and urban metrics," PloS one, vol. 8, no. 8, p. e69580, 2013. [DOI:10.1371/journal.pone.0069580]
16. [16] I. Setiawan, M. Dede, D. Sugandi, and M. A. Widiawaty, "Investigating urban crime pattern and accessibility using geographic information system in Bandung City," KnE Social Sciences, pp. 535-548-535-548, 2019. [DOI:10.18502/kss.v3i21.4993]
17. [17] L. Nubani and J. Wineman, "The role of space syntax in identifying the relationship between space and crime," in Proceedings of the 5th space syntax symposium on space syntax, delft, holland, 2005, pp. 13-17.
18. [18] E. di Bella, M. Corsi, L. Leporatti, and L. Persico, "The spatial configuration of urban crime environments and statistical modeling," Environment and Planning B: Urban Analytics and City Science, vol. 44, no. 4, pp. 647-667, 2017. [DOI:10.1177/0265813515624686]
19. [19] M. Zeng, Y. Mao, and C. Wang, "The relationship between street environment and street crime: A case study of Pudong New Area, Shanghai, China," Cities, vol. 112, p. 103143, 2021. [DOI:10.1016/j.cities.2021.103143]
20. [20] T. Davies and S. D. Johnson, "Examining the relationship between road structure and burglary risk via quantitative network analysis," Journal of Quantitative Criminology, vol. 31, pp. 481-507, 2015. [DOI:10.1007/s10940-014-9235-4]
21. [21] Y. Lamari, B. Freskura, A. Abdessamad, S. Eichberg, and S. de Bonviller, "Predicting spatial crime occurrences through an efficient ensemble-learning model," ISPRS International Journal of Geo-Information, vol. 9, no. 11, p. 645, 2020. [DOI:10.3390/ijgi9110645]
22. [22] C. Cowen, E. R. Louderback, and S. S. Roy, "The role of land use and walkability in predicting crime patterns: A spatiotemporal analysis of Miami-Dade County neighborhoods, 2007-2015," Security Journal, vol. 32, pp. 264-286, 2019. [DOI:10.1057/s41284-018-00161-7]
23. [23] M. Mahfoud, W. Bernasco, S. Bhulai, and R. van der Mei, "Forecasting spatio-temporal variation in residential burglary with the integrated laplace approximation framework: Effects of crime generators, street networks, and prior crimes," Journal of Quantitative Criminology, vol. 37, pp. 835-862, 2021. [DOI:10.1007/s10940-020-09469-3]
24. [24] A. Rummens, W. Hardyns, and L. Pauwels, "The use of predictive analysis in spatiotemporal crime forecasting: Building and testing a model in an urban context," Applied geography, vol. 86, pp. 255-261, 2017. [DOI:10.1016/j.apgeog.2017.06.011]
25. [25] T. Hu, X. Zhu, L. Duan, and W. Guo, "Urban crime prediction based on spatio-temporal Bayesian model," PloS one, vol. 13, no. 10, p. e0206215, 2018. [DOI:10.1371/journal.pone.0206215]
26. [26] M. Attard, M. Haklay, and C. Capineri, "The potential of volunteered geographic information (VGI) in future transport systems," Urban Planning, vol. 1, no. 4, pp. 6-19, 2016. [DOI:10.17645/up.v1i4.612]
27. [27] G. Javadi, M. Taleai, "Integration of User Generated Geo-contents and Official Data to Assess Quality of Life in Intra-national Level". Social Indicators Research, vol 152, no. 1, pp.205-235, 2020. [DOI:10.1007/s11205-020-02437-1]
28. [28] M. Jelokhani-Niaraki, R. Bastami Mofrad, Q. Yazdanpanah Dero, F. Hajiloo, and A. Sadeghi-Niaraki, "A volunteered geographic information system for monitoring and managing urban crimes: a case study of Tehran, Iran," Police Practice and Research, vol. 21, no. 6, pp. 547-561, 2020. [DOI:10.1080/15614263.2019.1644175]
29. [29] A. Keler and J. D. Mazimpaka, "Safety-aware routing for motorised tourists based on open data and VGI," Journal of location Based services, vol. 10, no. 1, pp. 64-77, 2016. [DOI:10.1080/17489725.2016.1170216]
30. [30] USA TODAY, .
31. [31] Missouri Census Data Center, U.S. Bureau of theCensus, .
32. [32] Los Angeles Geo Hub, U.S. government, .
33. [33] B. R. Prathap and K. Ramesha, "Geospatial crime analysis to determine crime density using Kernel density estimation for the Indian context," J Comput Theor Nanosci, vol. 171, pp. 74-86, 2020. [DOI:10.1166/jctn.2020.8632]
34. [34] S. P. Chainey, "Examining the influence of cell size and bandwidth size on kernel density estimation crime hotspot maps for predicting spatial patterns of crime," Bulletin of the Geographical Society of Liege, vol. 60, pp. 7-19, 2013.
35. [35] Esri 1969, global market leader in geographic information system (GIS) website, GIS DICTIONARY < https://support.esri.com>.
36. [36] K. Karimi, "A configurational approach to analytical urban design:'Space syntax'methodology," Urban Design International, vol. 17, no. 4, pp. 297-318, 2012. [DOI:10.1057/udi.2012.19]
37. [37] V. M. Netto, "'What is space syntax not?'Reflections on space syntax as sociospatial theory," Urban Design International, vol. 21, pp. 25-40, 2016. [DOI:10.1057/udi.2015.21]
38. [38] W. Dettlaff, "Space syntax analysis-methodology of understanding the space," PhD Interdisciplinary Journal, vol. 1, pp. 283-291, 2014.
39. [39] S. Griffiths, "The use of space syntax in historical research: current practice and future possibilities," in Proceedings of the Eighth International Space Syntax Symposium, 2012, vol. 8193, pp. 1-26: PUC (8193) Santiago de Chile.
40. [40] W. Zheng, N. Du, and X. Wang, "Understanding the city-transport system of urban agglomeration through improved space syntax analysis," International Regional Science Review, vol. 45, no. 2, pp. 161-187, 2022. [DOI:10.1177/01600176211023879]
41. [41] F. van der Hoeven and A. van Nes, "Improving the design of urban underground space in metro stations using the space syntax methodology," Tunnelling and Underground Space Technology, vol. 40, pp. 64-74, 2014. [DOI:10.1016/j.tust.2013.09.007]
42. [42] C. Alalouch, S. Al-Hajri, A. Naser, and A. Al Hinai, "The impact of space syntax spatial attributes on urban land use in Muscat: Implications for urban sustainability," Sustainable Cities and Society, vol. 46, p. 101417, 2019. [DOI:10.1016/j.scs.2019.01.002]
43. [43] D. Sahajramani, S. Purkayastha, J. Ranjit, and A. Vyas, "Determination of correlation between street accessibility and crimes using space syntax network graph analysis," in Proceedings of the 39th Asian Conference on Remote Sensing, Kuala Lumpur, Malaysia, 2018, pp. 15-19.
44. [44] A. Jayasinghe, K. Sano, and K. Rattanaporn, "Application for developing countries: Estimating trip attraction in urban zones based on centrality," Journal of Traffic and Transportation Engineering (English Edition), vol. 4, no. 5, pp. 464-476, 2017. [DOI:10.1016/j.jtte.2017.05.011]
45. [45] Q. Guo, P. Xu, X. Pei, S. Wong, and D. Yao, "The effect of road network patterns on pedestrian safety: A zone-based Bayesian spatial modeling approach," Accident Analysis & Prevention, vol. 99, pp. 114-124, 2017. [DOI:10.1016/j.aap.2016.11.002]
46. [46] D. Comer and J. S. Greene, "The development and application of a land use diversity index for Oklahoma City, OK," Applied Geography, vol. 60, pp. 46-57, 2015. [DOI:10.1016/j.apgeog.2015.02.015]
47. [47] S. R. Gehrke and K. J. Clifton, "Operationalizing land use diversity at varying geographic scales and its connection to mode choice: Evidence from Portland, Oregon," Transportation Research Record, vol. 2453, no. 1, pp. 128-136, 2014. [DOI:10.3141/2453-16]
48. [48] K. G. Willis, N. A. Powe, and G. D. Garrod, "Estimating the value of improved street lighting: A factor analytical discrete choice approach," Urban Studies, vol. 42, no. 12, pp. 2289-2303, 2005. [DOI:10.1080/00420980500332106]
49. [49] J. Ahn, E. Ko, and E. Y. Kim, "Highway traffic flow prediction using support vector regression and Bayesian classifier," in 2016 International conference on big data and smart computing (BigComp), 2016, pp. 239-244: IEEE. [DOI:10.1109/BIGCOMP.2016.7425919]
50. [50] Y. Feng, M. Liu, L. Chen, and Y. Liu, "Simulation of dynamic urban growth with partial least squares regression-based cellular automata in a GIS environment," ISPRS International Journal of Geo-Information, vol. 5, no. 12, p. 243, 2016. [DOI:10.3390/ijgi5120243]
51. [51] J. Shim and C. Hwang, "Kernel-based geographically and temporally weighted autoregressive model for house price estimation," PloS one, vol. 13, no. 10, p. e0205063, 2018. [DOI:10.1371/journal.pone.0205063]
52. [52] M. L. McHugh, "Interrater reliability: the kappa statistic," Biochemia medica, vol. 22, no. 3, pp. 276-282, 2012. [DOI:10.11613/BM.2012.031]
53. [53] T. Prior, F. Roth, L. Maduz, and F. Scafetti, "Mapping social vulnerability in Switzerland: a pilot study on flooding in Zürich," ETH Zurich2017.
54. [54] C. G. Thompson, R. S. Kim, A. M. Aloe, and B. J. Becker, "Extracting the variance inflation factor and other multicollinearity diagnostics from typical regression results," Basic and Applied Social Psychology, vol. 39, no. 2, pp. 81-90, 2017. [DOI:10.1080/01973533.2016.1277529]
55. [55] Esri 1969, global market leader in geographic information system (GIS) website, ArcGIS Pro, Tool Refrence, Geoprocessing Tools, Spatial Statistics toolbox, Modeling Spatial Relationships toolset concepts, How Exploratory Regression works, < https://pro.arcgis.com>.
56. [56] A. S. Fotheringham, R. Crespo, and J. Yao, "Geographical and temporal weighted regression (GTWR)," Geographical Analysis, vol. 47, no. 4, pp. 431-452, 2015. [DOI:10.1111/gean.12071]
ارسال پیام به نویسنده مسئول


XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ahmadi M H, Taleai M. Analysis and Zoning of Crime In Urban Areas Using Integration of Traditional Spatial Data and VGI. jgit 2025; 12 (4) :57-84
URL: http://jgit.kntu.ac.ir/article-1-934-fa.html

احمدی محمد هادی، طالعی محمد. تحلیل و پهنه بندی جُرم در مناطق شهری با تلفیق داده های سنتی و اطلاعات مکانی کاربر ساخت. مهندسی فناوری اطلاعات مکانی. 1403; 12 (4) :57-84

URL: http://jgit.kntu.ac.ir/article-1-934-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 12، شماره 4 - ( 12-1403 ) برگشت به فهرست نسخه ها
نشریه علمی-پژوهشی مهندسی فناوری اطلاعات مکانی Engineering Journal of Geospatial Information Technology
Persian site map - English site map - Created in 0.06 seconds with 38 queries by YEKTAWEB 4710