1. [1] X. Pi, B. A. Iijima, and W. Lu, "Effects of ionospheric scintillation on GNSS‐based positioning," Navigation: Journal of The Institute of Navigation, vol. 64, no. 1, pp. 3-22, 2017. [ DOI:10.1002/navi.182] 2. [2] Li, G., Ning, B., Otsuka, Y., Abdu, M.A., Abadi, P., Liu, Z., Spogli, L. and Wan, W., "Challenges to equatorial plasma bubble and ionospheric scintillation short-term forecasting and future aspects in east and southeast Asia," Surveys in Geophysics, vol. 42, pp. 201-238, 2021. [ DOI:10.1007/s10712-020-09613-5] 3. [3] M. C. Kelley, The Earth's ionosphere: plasma physics and electrodynamics. Academic press, 2009. 4. [4] E. V. Appleton, "The anomalous equatorial belt in the F2-layer," Journal of Atmospheric and terrestrial Physics, vol. 5, no. 1-6, pp. 348-351, 1954, doi: 10.1016/0021-9169(54)90054-9. [ DOI:10.1016/0021-9169(54)90054-9] 5. [5] A. Atabati, I. Jazireeyan, M. Alizadeh, M. Pirooznia, J. Flury, H. Schuh, and B. Soja, "Analyzing the Ionospheric Irregularities Caused by the September 2017 Geomagnetic Storm Using Ground-Based GNSS, Swarm, and FORMOSAT-3/COSMIC Data near the Equatorial Ionization Anomaly in East Africa," Remote Sensing, vol. 15, no. 24, p. 5762, 2023. [ DOI:10.3390/rs15245762] 6. [6] A. Atabati, I. Jazireeyan, M. M. Alizadeh, A. Pourmina, and A. Malekzadeh, "Investigation of the effects of geomagnetic storms on ionospheric irregularities using the combination of ground-based GNSS and SWARM satellites data," Engineering Journal of Geospatial Information Technology, vol. 10, no. 3, pp. 1-27, 2023. [ DOI:10.52547/jgit.10.3.1] 7. [7] B. Fejer, L. Scherliess, and E. de Paula, "Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread FJ Geophys. Res. 104, 19859-19869," ed, 1999. [ DOI:10.1029/1999JA900271] 8. [8] M. Abdu, J. Bittencourt, and I. Batista, "Magnetic declination control of the equatorial F region dynamo electric field development and spread F," Journal of Geophysical Research: Space Physics, vol. 86, no. A13, pp. 11443-11446, 1981. [ DOI:10.1029/JA086iA13p11443] 9. [9] T. E. Humphreys, M. L. Psiaki, and P. M. Kintner, "Modeling the effects of ionospheric scintillation on GPS carrier phase tracking," IEEE Transactions on Aerospace and Electronic Systems, vol. 46, no. 4, pp. 1624-1637, 2010. [ DOI:10.1109/TAES.2010.5595583] 10. [10] R. Tiwari, H. Strangeways, and S. Skone, "Modeling the effects of ionospheric scintillation on GPS carrier phase tracking using high rate TEC data," in Proceedings of the 26th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2013), 2013, pp. 2480-2488. 11. [11] L. F. C. Rezende, E. R. de Paula, S. Stephany, I. J. Kantor, M. T. A. H. Muella, P. M. de Siqueira, and K. S. Correa, "Survey and prediction of the ionospheric scintillation using data mining techniques," Space Weather, vol. 8, no. 6, pp. n/a-n/a, 2010, doi: 10.1029/2009sw000532. [ DOI:10.1029/2009SW000532] 12. [12] A. Atabati, M. Alizadeh, H. Schuh, and L.-C. Tsai, "Ionospheric scintillation prediction on s4 and roti parameters using artificial neural network and genetic algorithm," Remote Sensing, vol. 13, no. 11, p. 2092, 2021. [ DOI:10.3390/rs13112092] 13. [13] A. R. Atabati and M. M. Alizadeh, "Combining Neural Network with Genetic Algorithm for prediction of S4 Parameter using GPS measurement," (in eng), Journal of Geospatial Information Technology, Research vol. 7, no. 3, pp. 57-77, 2019, doi: 10.29252/jgit.7.3.57. [ DOI:10.29252/jgit.7.3.57] 14. [14] L. Liu, Y. J. Morton, and Y. Liu, "Machine Learning Prediction of Storm‐Time High‐Latitude Ionospheric Irregularities From GNSS‐Derived ROTI Maps," Geophysical Research Letters, vol. 48, no. 20, p. e2021GL095561, 2021. [ DOI:10.1029/2021GL095561] 15. [15] K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," arXiv preprint arXiv:1409.1556, 2014. 16. [16] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, "A convolutional neural network for modelling sentences," arXiv preprint arXiv:1404.2188, 2014. [ DOI:10.3115/v1/P14-1062] 17. [17] D. Mandic and J. Chambers, Recurrent neural networks for prediction: learning algorithms, architectures and stability. Wiley, 2001. [ DOI:10.1002/047084535X] 18. [18] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural computation, vol. 9, no. 8, pp. 1735-1780, 1997. [ DOI:10.1162/neco.1997.9.8.1735] 19. [19] R. Dey, Salem, F., "Gate-variants of gated recurrent unit (GRU) neural networks," in 2017 IEEE 60th international midwest symposium on circuits and systems (MWSCAS), 2017: IEEE, pp. 1597-1600. [ DOI:10.1109/MWSCAS.2017.8053243] 20. [20] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c. Woo, "Convolutional LSTM network: A machine learning approach for precipitation nowcasting," Advances in neural information processing systems, vol. 28, 2015. 21. [21] X. Shi, Z. Gao, L. Lausen, H. Wang, D.-Y. Yeung, W.-k. Wong, and W.-c. Woo, "Deep learning for precipitation nowcasting: A benchmark and a new model," Advances in neural information processing systems, vol. 30, 2017. 22. [22] E. R. de Paula, de Oliveira, Cesar BA, Caton, Ronald G, Negreti, Patricia M, Batista, Inez S, Martinon, André RF, Neto, Acácio C, Abdu, Mangalathayil A, Monico, João FG, Sousasantos, Jonas, "Ionospheric irregularity behavior during the September 6-10, 2017 magnetic storm over Brazilian equatorial-low latitudes," Earth, Planets and Space, vol. 71, no. 1, p. 42, 2019. [ DOI:10.1186/s40623-019-1020-z] 23. [23] A. Van Dierendonck, Klobuchar, J., Hua, Q., "Ionospheric scintillation monitoring using commercial single frequency C/A code receivers," in proceedings of ION GPS, 1993, vol. 93, pp. 1333-1342. 24. [24] J. Juan, Aragon-Angel, A., Sanz, J., González-Casado, G., Rovira-Garcia, A., "A method for scintillation characterization using geodetic receivers operating at 1 Hz," Journal of Geodesy, vol. 91, no. 11, pp. 1383-1397, 2017. [ DOI:10.1007/s00190-017-1031-0] 25. [25] B. Xiong, W. X. WAN, B. Q. NING, H. Yuan, and G. Z. LI, "A Comparison and Analysis of the S4 Index, C/N and Roti over Sanya," Chinese Journal of Geophysics, vol. 50, no. 6, pp. 1414-1424, 2007. [ DOI:10.1002/cjg2.1161] 26. [26] S. Haykin, Neural Networks and Learning Machines New Jersey: Pearson Prentice Hall, 2008. 27. [27] Pouyanfar, S., Sadiq, S., Yan, Y., Tian, H., Tao, Y., Reyes, M.P., Shyu, M.L., Chen, S.C. and Iyengar, S.S., "A survey on deep learning: Algorithms, techniques, and applications," ACM Computing Surveys (CSUR), vol. 51, no. 5, pp. 1-36, 2018. [ DOI:10.1145/3234150] 28. [28] D. Zhang and M. R. Kabuka, "Combining weather condition data to predict traffic flow: a GRU‐based deep learning approach," IET Intelligent Transport Systems, vol. 12, no. 7, pp. 578-585, 2018. [ DOI:10.1049/iet-its.2017.0313] 29. [29] G. Dai, C. Ma, and X. Xu, "Short-term traffic flow prediction method for urban road sections based on space-time analysis and GRU," IEEE Access, vol. 7, pp. 143025-143035, 2019. [ DOI:10.1109/ACCESS.2019.2941280] 30. [30] C. Gu and H. Li, "Review on deep learning research and applications in wind and wave energy," Energies, vol. 15, no. 4, p. 1510, 2022. [ DOI:10.3390/en15041510] 31. [31] Y. Sun, H. Zhang, S. Hu, J. Shi, J. Geng, and Y. Su, "ConvGRU-RMWP: A Regional Multi-Step Model for Wave Height Prediction," Mathematics, vol. 11, no. 9, p. 2013, 2023. [ DOI:10.3390/math11092013] 32. [32] A. Atabati, Alizadeh, M., Schuh, H. and L. C. Tsai, "Ionospheric scintillation prediction on s4 and roti parameters using artificial neural network and genetic algorithm," Remote Sensing, vol. 13, no. 11, p. 2092, 2021. [ DOI:10.3390/rs13112092] 33. [33] B. Zolesi, Cander, Ljiljana R, "The General Structure of the Ionosphere," in Ionospheric Prediction and Forecasting: Springer, 2014, pp. 11-48. [ DOI:10.1007/978-3-642-38430-1_2] 34. [34] E. R. De Paula, F. S. Rodrigues, K. N. Iyer, I. J. Kantor, M. A. Abdu, P. M. Kintner, B. M. Ledvina, and H. Kintner "Equatorial anomaly effects on GPS scintillations in Brazil," 2003, doi: 10.1016/S0273-1177(03)00048-6. [ DOI:10.1016/S0273-1177(03)00048-6] 35. [35] J. Wilkinson, New Eyes on the Sun: A Guide to Satellite Images and Amateur Observation (Springer Science & Business Media). 2012. [ DOI:10.1007/978-3-642-22839-1] 36. [36] F. Arikan, Erol, CB, Arikan, O, "Regularized estimation of vertical total electron content from GPS data for a desired time period," Radio Science, vol. 39, no. 6, pp. 1-10, 2004. [ DOI:10.1029/2004RS003061]
|