[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
داوران::
ثبت نام و اشتراک::
تماس با ما::
تسهیلات پایگاه::
بایگانی مقالات زیر چاپ::
آمار نشریه::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
آمار سایت
مقالات منتشر شده: 335
نرخ پذیرش: 63.1
نرخ رد: 36.9
میانگین داوری: 208 روز
میانگین انتشار: 343 روز
..
:: دوره 12، شماره 3 - ( 9-1403 ) ::
جلد 12 شماره 3 صفحات 83-63 برگشت به فهرست نسخه ها
خوشه بندی شکل تیم بر مبنای داده های مکانی-زمانی برای تجزیه و تحلیل رفتار جمعی بازیکنان تیم فوتبال
علی زارع زردینی* ، زهرا بهرامیان
دانشگاه تهران
چکیده:   (1098 مشاهده)
در سال­ های اخیر تحلیل داده­ های فوتبال برای آنالیز رفتار بازیکنان مورد توجه قرار گرفته است. بخش مهمی از این داده­ ها ماهیتی مکانی-زمانی دارند و همین امر اهمیت تحلیل­ های مکانی-زمانی را در صنعت فوتبال پررنگ­ تر می­ کند. هدف از این تحقیق، تحلیل رفتار جمعی بازیکنان در سطح ماکرو می­ باشد. برای این منظور، در گام اول در هر فریم زمانی، مشخصات تیم بر مبنای مجموعه­ ای از پارامترهای مکانی، هندسی، توپولوژیکی و توزیع استخراج می­ شود. سپس، این پارامترها مبنای خوشه­ بندی شکل تیم قرار می­ گیرند. این خوشه­ بندی به صورت دومرحله­ ای انجام می­ شود. در مرحله اول، خوشه­ های اصلی بر مبنای پارامترهای مکانی به دست می­ آید و وضعیت تدافعی یا تهاجمی بودن تیم مشخص می­ شود. در مرحله دوم به ازای هر یک از خوشه­ های اصلی، بر مبنای سایر پارامترها، خوشه­ های جدید تعریف می­ شوند که بیانگر شکل کلی تیم در یک محدوده مشخص می­ باشند. در این تحقیق از داده­ های یک مسابقه فوتبال استفاده شده و پنج خوشه اصلی، و همچنین پنج زیر خوشه به ازای هر یک از خوشه­ های اصلی به دست آمده است. در فرآیند ارزیابی، میزان تفاوت شکل تیم با مرکز خوشه­ متناظر با آن، اندازه­ گیری شده است. میزان انحراف معیار این تفاوت در خوشه­ های اصلی بین 0.19 تا 0.27 متغیر است. بر مبنای این تغییر در انحراف معیار، میزان نوسانات شکل تیم در مناطق مختلف زمین و بر مبنای خوشه­ بندی تیم در زمان­ های مختلف مسابقه، سهم زمانی خوشه­ ها و میزان تسلط تیم بر زمین، وضعیت تدافعی یا تهاجمی بودن و روند کلی تغییر وضعیت تیم مشخص می­ شود. در نظر گرفتن پارامترهای مکانی، توپولوژیکی و تراکم در کنار پارامتر­های هندسی، انجام خوشه­ بندی به صورت دو‌مرحله­ ای و بدون نیاز به انتقال شکل به فضای رستر (و در نتیجه عدم نیاز به استفاده از تکنیک­ های پردازش تصویر) از نقاط تمایز مقاله پیش­ رو در مقایسه با تحقیقات پیشین به شمار می­ آید. 
واژه‌های کلیدی: تحلیل رفتار جمعی بازیکنان فوتبال، داده های مکانی زمانی، پوش محدب، خوشه بندی دو مرحله ای، الگوریتم K-Means
متن کامل [PDF 2157 kb]   (120 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: سیستمهای اطلاعات مکانی (عمومی)
دریافت: 1403/4/27 | پذیرش: 1403/7/17 | انتشار الکترونیک پیش از انتشار نهایی: 1403/8/8 | انتشار: 1403/11/14
فهرست منابع
1. [1]. F.R. Goes, L.A. Meerhoff, M.J.O. Bueno, D.M. Rodrigues, F.A. Moura, M.S. Brink, M.T. Elferink-Gemser, A.J. Knobbe, S.A. Cunha, R.S. Torres, and K.A.P.M. Lemmink, "Unlocking the Potential of Big Data to Support Tactical Performance Analysis in Professional Soccer: A Systematic Review", European Journal of Sport Science. Eur J Sport Sci, Vol. 21(4), pp. 481-496, 2020, DOI: 10.1080/17461391.2020.1747552. [DOI:10.1080/17461391.2020.1747552]
2. [2]. J. Gudmundsson, and T. Wolle, "Football Analysis Using Spatio-Temporal Tools", Computers, Environment and Urban Systems, Vol. 47, pp. 16-27, 2014, DOI: [DOI:10.1016/j.compenvurbsys.2013.09.004]
3. [3]. J. Gudmundsson, and M. Horton, "Spatio-Temporal Analysis of Team Sports", ACM Computing Surveys, Vol. 50(2). pp 1-34, 2017, DOI:10.1145/3054132 [DOI:10.1145/3054132]
4. [4]. Y. Li, R. Ma, B. Gonçalves, B. Gong, Y. Cui, and Y. Shen, "Data-driven team ranking and match performance analysis in Chinese Football Super League", Journal of Chaos, Solitons & Fractals, Vol 141 (110330), 2020, DOI: [DOI:10.1016/j.chaos.2020.110330]
5. [5] D. Araújo, P. Passos, P. Esteves, R. Duarte, J. Lopes, R. Hristovski, and K. Davids, "The Micro-Macro Link in Understanding Sport Tactical Behaviours: Integrating Information and Action at Different Levels of System Analysis in Sport", Movement & Sport Sciences - Science & Motricité, pp. 53-63, 2015, DOI:10.1051/sm/2015028 [DOI:10.1051/sm/2015028]
6. [6]. V. Kaldaras, Y. Michailidis, I. Gissis, and T.I. Metaxas, "The Running Performance of Amateur Football Players in Matches with a 1-4-3-3 Formation in Relation to Their Playing Position and the 15-min Time Periods", Appl. Sci., Vol. 14 (7036), 2024, DOI: [DOI:10.3390/app14167036]
7. [7]. R. Izzo, S. Franco, and C. Hosseini Varde'I, "Analysis of Speed Thresholds in Youth Amateur Football Players Divided by Roles Using GPS Technologies", Journal of Sports Sciences, Vol. 6, 2018, DOI: 10.17265/2332-7839/2018.04.004 [DOI:10.17265/2332-7839/2018.04.004]
8. [8]. M. Mitrotasios, I. Ispyrlidis, N. Mantzouranis, G. Paraskeyopoulos, "GPS-based performance analysis in amateur football: Match Evaluation Relative to Players' Tactical Roles", Journal of Physical Education and Sport, Vol. 24(5), pp. 1275-1280, 2024, DOI:10.7752/jpes.2024.05145 [DOI:10.7752/jpes.2024.05145]
9. [9]. M.J.O. Bueno, M. Silva, S.A. Cunha, R.S. Torres, F.A. Moura, "Multiscale Fractal Dimension Applied to Tactical Analysis in Football: A Novel Approach to Evaluate the Shapes of Team Organization on The Pitch", PLoS ONE, Vol. 16(9), 2021, [DOI:10.1371/journal.pone.0256771]
10. [10]. G. Zhang, "The Analysis of Team Tactical Behaviour in Football Using GNSS Positional Data", Master Thesis, Liverpool John Moores University, 2022, DOI:10.24377/LJMU.t.00019091. https://researchonline.ljmu.ac.uk/id/eprint/19091/1/2022guangzezhangmphil.pdf
11. [11]. L. Shaw, and M. Glickman, "Dynamic Analysis of Team Strategy in Professional Football", BARÇA Sports Analytics Summit, 2020, https://static.capabiliaserver.com/frontend/clients/barca/wp_prod/wp-content/uploads/2020/01/56ce723e-barca-conference-paper-laurie-shaw.pdf
12. [12]. J. Whitmore, and T. Seidl, "Shape Analysis: Automatically Detecting Formations", 2021, https://theanalyst.com/na/2021/03/shape-analysis-automatically-detecting-formations/
13. [13]. B. Goncalves, D. Coutinho, J. Exel, B. Travassos, C. Lago, and J. Sampaio, "Extracting Spatial-Temporal Features That Describe a Team Match Demands When Considering the Effects of The Quality of Opposition in Elite Football", PLoS ONE, Vol. 14(8), 2019, [DOI:10.1371/journal.pone.0221368]
14. [14]. T. Narizuka, and Y. Yamazaki, "Clustering Algorithm for Formations in Football Games", Scientific Reports, Vol. 9(13172), 2019, [DOI:10.1038/s41598-019-48623-1]
15. [15]. A. Bialkowski, P. Lucey, P. Carr, Y. Yue, S. Sridharan, and I. Matthews, "Large-Scale Analysis of Soccer Matches Using Spatiotemporal Tracking Data", presented at IEEE International Conference on Data Mining, Shenzhen, China, pp.725-730, 2014, DOI:10.1109/ICDM.2014.133 [DOI:10.1109/ICDM.2014.133]
16. [16]. N. Liu, "Geovisualisation of Football Players Movement", Diploma Thesis, Palacký University Olomouc, Faculty of Science, Department of Geoinformatics,2022, https://theses.cz/id/mbeof5/48261609
17. [17]. J.V. Haaren, P. Robberechts, T. Decroos, L. Bransen, and J. Davis, "Analyzing Performance and Playing Style Using Ball Event Data", 2019, https://www.janvanhaaren.be/assets/papers/bih-2019-event-data.pdf
18. [18]. StatsBomb Open Data: https://github.com/statsbomb/open-data
19. [19]. Football Events from Kaggle: https://www.kaggle.com/datasets/secareanualin/football-events
21. [21]. Metrica Sports Sample Data: https://github.com/metrica-sports/sample-data
22. [22]. FBref Website: https://fbref.com/en
23. [23]. A. Fujimura, and K. Sugihara, "Geometric Analysis and Quantitative Evaluation of Sport Teamwork", Systems and Computers in Japan, Vol. 36(6), 2005, DOI:10.1002/scj.20254 [DOI:10.1002/scj.20254]
24. [24]. H. Fan, Z. Zhao, and L. Wenwen, "Towards Measuring Shape Similarity of Polygons Based on Multiscale Features and Grid Context Descriptors", ISPRS Int. J. Geo-Inf., Vol. 10(279), 2021, [DOI:10.3390/ijgi10050279]
25. [25]. M.A. Wirth, "Shape Analysis & Measurement", University of Guelph, Computing and Information Science, Image Processing Group, 2004, http://www.cyto.purdue.edu/cdroms/micro2/content/education/wirth10.pdf
26. [26]. F. Park, "Shape Descriptor/Feature Extraction Techniques", UCI iCAMP, 2011, https://www.researchgate.net/profile/James-Peters-3/post/How-to-extract-features-for-classification-of-geometry-design/attachment/59d62643c49f478072e9ade8/AS%3A272177448849413%401441903568230/download/shape-descriptors.pdf
27. [27]. Six-by-Three Grid: https://spielverlagerung.com/glossary/pitch-zones/six-by-three/
28. [28]. Positional play: football tactics explained: https://www.coachesvoice.com/cv/positional-play-football-tactics-explained-guardiola-cruyff-manchester-city/
29. [29] L. Morissette, and S. Chartier, "The K-Means Clustering Technique: General Considerations and Implementation in Mathematica", Tutorials in Quantitative Methods for Psychology. Vol. 9(1), p. 15-24. 2013, DOI: 10.20982/tqmp.09.1.p015 [DOI:10.20982/tqmp.09.1.p015]
30. [30]. R. Gasparini, and A. Álvaro, "Positional Analysis of Brazilian Soccer Players Using GPS Data", Revista Brasileira de Computação Aplicada, Vol. 12(3), pp. 16-32, 2020, DOI: 10.5335/rbca.v12i3.10234 [DOI:10.5335/rbca.v12i3.10234]
31. [31]. R. Duraciová, "An Aggregated Shape Similarity Index: A Case Study of Comparing the Footprints of OpenStreetMap and INSPIRE Buildings", ISPRS Int, J.Geo-Inf, Vol. 12 (495), 2023, DOI:.org/10.3390/ijgi12120495 [DOI:10.3390/ijgi12120495]
ارسال پیام به نویسنده مسئول



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zare Zardiny A, Bahramian Z. Shape Clustering Based on Spatio-Temporal Data for Analyzing the Collective Behavior of a Football Team. jgit 2024; 12 (3) :63-83
URL: http://jgit.kntu.ac.ir/article-1-952-fa.html

زارع زردینی علی، بهرامیان زهرا. خوشه بندی شکل تیم بر مبنای داده های مکانی-زمانی برای تجزیه و تحلیل رفتار جمعی بازیکنان تیم فوتبال. مهندسی فناوری اطلاعات مکانی. 1403; 12 (3) :63-83

URL: http://jgit.kntu.ac.ir/article-1-952-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 12، شماره 3 - ( 9-1403 ) برگشت به فهرست نسخه ها
نشریه علمی-پژوهشی مهندسی فناوری اطلاعات مکانی Engineering Journal of Geospatial Information Technology
Persian site map - English site map - Created in 0.1 seconds with 38 queries by YEKTAWEB 4710