1. [1] A. Ibrahim, A. Wayayok, H. Z. M. Shafri, and N. M. J. J. o. H. X. Toridi, "Remote Sensing Technologies for Unlocking New Groundwater Insights: A Comprehensive Review," vol. 23, pp. 100175, 2024. [ DOI:10.1016/j.hydroa.2024.100175] 2. [2] O. Sarychikhina, D. G. Palacios, L. A. D. Argote, and A. G. J. J. o. S. A. E. S. Ortega, "Application of satellite SAR interferometry for the detection and monitoring of landslides along the Tijuana-Ensenada Scenic Highway, Baja California, Mexico," vol. 107, pp. 103030, 2021. [ DOI:10.1016/j.jsames.2020.103030] 3. [3] R. Bokhari, H. Shu, A. Tariq, N. Al-Ansari, R. Guluzade, T. Chen, A. Jamil, and M. J. H. Aslam, "Land subsidence analysis using synthetic aperture radar data," vol. 9, no. 3, 2023. [ DOI:10.1016/j.heliyon.2023.e14690] 4. [4] A. Pepe, and F. J. A. S. Calò, "A review of interferometric synthetic aperture RADAR (InSAR) multi-track approaches for the retrieval of Earth's surface displacements," vol. 7, no. 12, pp. 1264, 2017. [ DOI:10.3390/app7121264] 5. [5] Y. Xia, "Synthetic aperture radar interferometry," Sciences of geodesy-I: Advances and future directions, pp. 415-474: Springer, 2010. [ DOI:10.1007/978-3-642-11741-1_11] 6. [6] S. Li, W. Xu, and Z. J. G. Li, "Review of the SBAS InSAR Time-series algorithms, applications, and challenges," vol. 13, no. 2, pp. 114-126, 2022. [ DOI:10.1016/j.geog.2021.09.007] 7. [7] A. Ferretti, C. Prati, and F. J. I. T. o. g. Rocca, "Permanent scatterers in SAR interferometry," vol. 39, no. 1, pp. 8-20, 2001. [ DOI:10.1109/36.898661] 8. [8] O. Oktar, H. Erdoğan, F. Poyraz, and İ. J. A. J. o. G. Tiryakioğlu, "Investigation of deformations with the GNSS and PSInSAR methods," vol. 14, pp. 1-16, 2021. [ DOI:10.1007/s12517-021-08765-x] 9. [9] A. Ferretti, F. Novali, R. Bürgmann, G. Hilley, and C. J. E. Prati, Transactions American Geophysical :union:, "InSAR permanent scatterer analysis reveals ups and downs in San Francisco Bay area," vol. 85, no. 34, pp. 317-324, 2004. [ DOI:10.1029/2004EO340002] 10. [10] S. Xiong, C. Wang, X. Qin, B. Zhang, and Q. J. R. S. Li, "Time-series analysis on persistent scatter-interferometric synthetic aperture radar (PS-InSAR) derived displacements of the Hong Kong-Zhuhai-Macao Bridge (HZMB) from Sentinel-1A observations," vol. 13, no. 4, pp. 546, 2021. [ DOI:10.3390/rs13040546] 11. [11] S. Aminikhanghahi, and D. J. J. K. Cook, "A survey of methods for time series change point detection," vol. 51, no. 2, pp. 339-367, 2017. [ DOI:10.1007/s10115-016-0987-z] 12. [12] E. Ghaderpour, B. Antonielli, F. Bozzano, G. ScarasciaMugnozza, and P. J. C. Mazzanti, "A fast and robust method for detecting trend turning points in InSAR displacement time series," pp. 105546, 2024. [ DOI:10.1016/j.cageo.2024.105546] 13. [13] F. Lattari, A. Rucci, and M. J. I. T. o. G. Matteucci, "A deep learning approach for change points detection in InSAR time series," vol. 60, pp. 1-16, 2022. [ DOI:10.1109/TGRS.2022.3155969] 14. [14] M. Khoshlahjeh Azar, A. Hamedpour, and Y. Maghsoudi, "Analysis of the deformation behavior and sinkhole risk in Kerdabad, Iran using the PS-InSAR method," vol. 13, no. 14, pp. 2696, 2021. [ DOI:10.3390/rs13142696] 15. [15] S. Shami, M. K. Azar, F. Nilfouroushan, M. Salimi, and M. A. M. J. I. J. o. A. E. O. Reshadi, "Assessments of ground subsidence along the railway in the Kashan plain, Iran, using Sentinel-1 data and NSBAS algorithm," vol. 112, pp. 102898, 2022. [ DOI:10.1016/j.jag.2022.102898] 16. [16] M. Zhu, X. Wan, B. Fei, Z. Qiao, C. Ge, F. Minati, F. Vecchioli, J. Li, and M. J. R. S. Costantini, "Detection of building and infrastructure instabilities by automatic spatiotemporal analysis of satellite SAR interferometry measurements," vol. 10, no. 11, pp. 1816, 2018. [ DOI:10.3390/rs10111816] 17. [17] J. Li, P. Fearnhead, P. Fryzlewicz, and T. J. J. o. t. R. S. S. S. B. S. M. Wang, "Automatic change-point detection in time series via deep learning," vol. 86, no. 2, pp. 273-285, 2024. [ DOI:10.1093/jrsssb/qkae004] 18. [18] S. A. Fakhri, M. Satari Abrovi, H. Zakeri, A. Safdarinezhad, and A. J. I. J. o. P. E. Fakhri, "Pavement crack detection through a deep-learned asymmetric encoder-decoder convolutional neural network," vol. 24, no. 1, pp. 2255359, 2023. [ DOI:10.1080/10298436.2023.2255359] 19. [19] D. Amr, X.-l. Ding, and R. J. T. E. J. o. R. S. Fekry, "A machine learning-based method for multi-satellite SAR data integration," vol. 27, no. 1, pp. 1-9, 2024. [ DOI:10.1016/j.ejrs.2023.12.001] 20. [20] R. Kruse, S. Mostaghim, C. Borgelt, C. Braune, and M. Steinbrecher, "Multi-layer perceptrons," Computational intelligence: a methodological introduction, pp. 53-124: Springer, 2022. [ DOI:10.1007/978-3-030-42227-1_5] 21. [21] A. H. Abd-elaziem, and T. H. J. I. J. o. A. i. A. C. I. Soliman, "A Multi-Layer Perceptron (MLP) Neural Networks for Stellar Classification: A Review of Methods and Results," vol. 3, no. 10.54216, 2023. 22. [22] S. Liu, L. Wang, W. Zhang, Y. He, and S. J. G. J. Pijush, "A comprehensive review of machine learning‐based methods in landslide susceptibility mapping," vol. 58, no. 6, pp. 2283-2301, 2023. [ DOI:10.1002/gj.4666] 23. [23] A. Ferretti, E. Passera, and R. Capes, End-to-End Implementation and Operation of the European Ground Motion Service (EGMS): Algorithm Theoretical Basis Document, Technical Report EGMS-D3-ALG-SC1-2.0-006. 2021. Available online: https …, 2021. 24. [24] M. Costantini, F. Minati, F. Trillo, A. Ferretti, E. Passera, A. Rucci, J. Dehls, Y. Larsen, P. Marinkovic, and M. Eineder, "EGMS: Europe-wide ground motion monitoring based on full resolution InSAR processing of all Sentinel-1 acquisitions." pp. 5093-5096, 2022. [ DOI:10.1109/IGARSS46834.2022.9884966] 25. [25] F. Cigna, C. Del Ventisette, V. Liguori, and N. J. N. H. Casagli, "Advanced radar-interpretation of InSAR time series for mapping and characterization of geological processes," vol. 11, no. 3, pp. 865-881, 2011. [ DOI:10.5194/nhess-11-865-2011] 26. [26] F. Cigna, D. Tapete, and N. J. N. p. i. g. Casagli, "Semi-automated extraction of Deviation Indexes (DI) from satellite Persistent Scatterers time series: tests on sedimentary volcanism and tectonically-induced motions," vol. 19, no. 6, pp. 643-655, 2012. [ DOI:10.5194/npg-19-643-2012] 27. [27] M. Berti, A. Corsini, S. Franceschini, J. J. N. H. Iannacone, and E. S. Sciences, "Automated classification of Persistent Scatterers Interferometry time series," vol. 13, no. 8, pp. 1945-1958, 2013. [ DOI:10.5194/nhess-13-1945-2013] 28. [28] F. Raspini, S. Bianchini, A. Ciampalini, M. Del Soldato, L. Solari, F. Novali, S. Del Conte, A. Rucci, A. Ferretti, and N. J. S. r. Casagli, "Continuous, semi-automatic monitoring of ground deformation using Sentinel-1 satellites," vol. 8, no. 1, pp. 7253, 2018. [ DOI:10.1038/s41598-018-25369-w] 29. [29] A. Refice, G. Pasquariello, F. J. I. G. Bovenga, and R. S. Letters, "Model-free characterization of SAR MTI time series," vol. 19, pp. 1-5, 2020. [ DOI:10.1109/LGRS.2020.3031655] 30. [30] F. Bovenga, G. Pasquariello, and A. J. R. S. Refice, "Statistically-based trend analysis of MTInSAR displacement time series," vol. 13, no. 12, pp. 2302, 2021. [ DOI:10.3390/rs13122302] 31. [31] E. Hussain, A. Novellino, C. Jordan, and L. J. R. S. Bateson, "Offline-online change detection for Sentinel-1 InSAR time series," vol. 13, no. 9, pp. 1656, 2021. [ DOI:10.3390/rs13091656] 32. [32] A. Kulshrestha, L. Chang, and A. J. I. J. o. S. T. i. A. E. O. Stein, "Use of LSTM for sinkhole-related anomaly detection and classification of InSAR deformation time series," vol. 15, pp. 4559-4570, 2022. [ DOI:10.1109/JSTARS.2022.3180994] 33. [33] X. Shao, and X. J. J. o. t. A. S. A. Zhang, "Testing for change points in time series," vol. 105, no. 491, pp. 1228-1240, 2010. [ DOI:10.1198/jasa.2010.tm10103] 34. [34] J. C. J. C. E. Valderrama Balaguera, "Precipitation forecast estimation applying the change point method and ARIMA," vol. 11, no. 1, pp. 2340191, 2024. [ DOI:10.1080/23311916.2024.2340191] 35. [35] T. C. Mills, Applied time series analysis: A practical guide to modeling and forecasting: Academic press, 2019. 36. [36] T. Islam, M. S. Hafiz, J. R. Jim, M. M. Kabir, and M. J. H. A. Mridha, "A systematic review of deep learning data augmentation in medical imaging: Recent advances and future research directions," pp. 100340, 2024. [ DOI:10.1016/j.health.2024.100340] 37. [37] K. Alomar, H. I. Aysel, and X. J. J. o. I. Cai, "Data augmentation in classification and segmentation: A survey and new strategies," vol. 9, no. 2, pp. 46, 2023. [ DOI:10.3390/jimaging9020046] 38. [38] H. Jalali, and G. J. a. p. a. Kasneci, "Expert Selection in Distributed Gaussian Processes: A Multi-label Classification Approach," 2022. 39. [39] Y. Li, E. Jiang, Z. Ni, W. Li, M. Huang, F. Zhao, F. Liu, Y. Ye, and S. J. C. M. S. Bai, "A study of the role of data and model uncertainty in active learning," vol. 247, pp. 113512, 2025. [ DOI:10.1016/j.commatsci.2024.113512] 40. [40] X. J. J. o. E. Jiang, and E. Research, "Gaussian Distributions in Machine Learning," vol. 9, no. 3, pp. 184-186, 2024. [ DOI:10.54097/fb5qm725] 41. [41] T. Ye, J. Nie, J. Wang, P. Shi, and Z. J. S. e. r. Wang, "Performance of detrending models of crop yield risk assessment: evaluation on real and hypothetical yield data," vol. 29, pp. 109-117, 2015. [ DOI:10.1007/s00477-014-0871-x] 42. [42] A. Kumar, A. Kumar, R. P. Singh, P. Kumar, and P. V. J. A. R. J. o. A. Singh, "A Comparative Study of Detrending Methods on Crop Yield Time Series for Drought Studies," vol. 17, no. 3, pp. 191-204, 2024. [ DOI:10.9734/arja/2024/v17i3488] 43. [43] X. Su, X. Yan, and C. L. J. W. I. R. C. S. Tsai, "Linear regression," vol. 4, no. 3, pp. 275-294, 2012. [ DOI:10.1002/wics.1198] 44. [44] S. D. Walton, and K. R. J. F. i. A. Murphy, "Superposed epoch analysis using time-normalization: A Python tool for statistical event analysis," vol. 9, pp. 1000.145, 2022. [ DOI:10.3389/fspas.2022.1000145] 45. [45] S. Bhanja, and A. J. a. p. a. Das, "Impact of data normalization on deep neural network for time series forecasting," 2018. 46. [46] D. Agliz, and A. J. I. J. o. C. A. Atmani, "Seismic signal classification using multi-layer perceptron neural network," vol. 79, no. 15, 2013. [ DOI:10.5120/13821-1950] 47. [47] A. P. Wibawa, A. B. P. Utama, H. Elmunsyah, U. Pujianto, F. A. Dwiyanto, and L. J. J. o. b. D. Hernandez, "Time-series analysis with smoothed Convolutional Neural Network," vol. 9, no. 1, pp. 44, 2022. [ DOI:10.1186/s40537-022-00599-y] 48. [48] B.-S. Kim, Y.-S. Moon, M.-J. Choi, and J. J. M. T. Kim, "Interactive noise-controlled boundary image matching using the time-series moving average transform," vol. 72, pp. 2543-2571, 2014. [ DOI:10.1007/s11042-013-1552-3] 49. [49] S. Hansun, "A new approach of moving average method in time series analysis", in 2013 conference on new media studies (CoNMedia), IEEE, pp. 1-4, 2013. [ DOI:10.1109/CoNMedia.2013.6708545] 50. [50] L. Zhao, and Z. J. S. R. Zhang, "A improved pooling method for convolutional neural networks," vol. 14, no. 1, pp. 1589, 2024. [ DOI:10.1038/s41598-024-51258-6] 51. [51] C. J. E. S. w. A. Özdemir, "Avg-topk: A new pooling method for convolutional neural networks," vol. 223, pp. 119892, 2023. [ DOI:10.1016/j.eswa.2023.119892] 52. [52] A. Borovykh, C. W. Oosterlee, and S. M. J. J. o. C. S. Bohté, "Generalization in fully-connected neural networks for time series forecasting," vol. 36, pp. 101020, 2019. [ DOI:10.1016/j.jocs.2019.07.007] 53. [53] J. Jin, A. Dundar, and E. J. a. p. a. Culurciello, "Flattened convolutional neural networks for feedforward acceleration," 2014. 54. [54] S. S. Basha, S. R. Dubey, V. Pulabaigari, and S. J. N. Mukherjee, "Impact of fully connected layers on performance of convolutional neural networks for image classification," vol. 378, pp. 112-119, 2020. [ DOI:10.1016/j.neucom.2019.10.008] 55. [55] S. Kiliçarslan, and M. J. E. S. w. A. Celik, "RSigELU: A nonlinear activation function for deep neural networks," vol. 174, pp. 114805, 2021. [ DOI:10.1016/j.eswa.2021.114805] 56. [56] A. Creswell, K. Arulkumaran, and A. A. J. a. p. a. Bharath, "On denoising autoencoders trained to minimise binary cross-entropy," 2017. 57. [57] O. Hospodarskyy, V. Martsenyuk, N. Kukharska, A. Hospodarskyy, and S. Sverstiuk, "Understanding the Adam Optimization Algorithm in Machine Learning," 2024. 58. [58] S. A. Fakhri, S. Motayyeb, M. Saadatseresht, H. Zakeri, and V. Mousavi, "COMPARISON OF UAV IMAGE SPATIAL RESOLUTION BASED ON THE SIEMENS STAR TARGET," ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., vol. X-4/W1-2022, pp. 143-150, 2023. [ DOI:10.5194/isprs-annals-X-4-W1-2022-143-2023] 59. [59] L. Yang, and A. J. N. Shami, "On hyperparameter optimization of machine learning algorithms: Theory and practice," vol. 415, pp. 295-316, 2020. [ DOI:10.1016/j.neucom.2020.07.061] 60. [60] D. M. Belete, M. D. J. I. J. o. C. Huchaiah, and Applications, "Grid search in hyperparameter optimization of machine learning models for prediction of HIV/AIDS test results," vol. 44, no. 9, pp. 875-886, 2022. [ DOI:10.1080/1206212X.2021.1974663] 61. [61] A. Pettitt, "A non‐parametric approach to the change‐point problem," vol. 28, no. 2, pp. 126-135, 1979. [ DOI:10.2307/2346729] 62. [62] S. Lee, S. Lee, and M. J. A. S. C. Moon, "Hybrid change point detection for time series via support vector regression and CUSUM method," vol. 89, pp. 106101, 2020. [ DOI:10.1016/j.asoc.2020.106101] 63. [63] B. Basnayake, N. J. S. Chandrasekara, and Applications, "Use of change point analysis in seasonal ARIMA models for forecasting tourist arrivals in Sri Lanka," vol. 20, no. 2, pp. 103-121, 2022. 64. [64] Z. Yunjun, H. Fattahi, F. J. C. Amelung, and Geosciences, "Small baseline InSAR time series analysis: Unwrapping error correction and noise reduction," vol. 133, pp. 10.4331, 2019. [ DOI:10.1016/j.cageo.2019.104331]
|