[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
داوران::
ثبت نام و اشتراک::
تماس با ما::
تسهیلات پایگاه::
بایگانی مقالات زیر چاپ::
آمار نشریه::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
آمار سایت
مقالات منتشر شده: 338
نرخ پذیرش: 63.2
نرخ رد: 36.8
میانگین داوری: 207 روز
میانگین انتشار: 342 روز
..
:: دوره 13، شماره 1 - ( 3-1404 ) ::
جلد 13 شماره 1 صفحات 120-95 برگشت به فهرست نسخه ها
شناسایی تغییرات چند کلاسه ساختمانی با استفاده از شبکه های یادگیری عمیق مبتنی بر داده های سه بعدی هوایی و ماهواره ای
اکرم افتخاری* ، فرهاد صمدزادگان ، فرزانه دادرس جوان
دانشگاه تهران
چکیده:   (797 مشاهده)

تشخیص تغییرات سه‌بعدی در ساختمان‌ها نقشی حیاتی در نظارت شهری، توسعه پایدار، و مدیریت بلایا دارد. این پژوهش روشی نوآورانه برای تشخیص تغییرات چند کلاسه ساختمان‌ها ارائه می‌کند. روش پیشنهادی با ترکیب دو معماری پیشرفته شامل شبکه مبدل سیامی و مکانیزم‌های توجه مکانی - کانالی، قابلیت تشخیص دقیق تغییرات ساختمانی را به‌صورت خودکار فراهم می‌سازد. نوآوری اصلی این کار در طراحی یک بلوک کدگذار مبتنی بر توجه دوگانه است که به‌صورت هم‌زمان روابط مکانی محلی و وابستگی‌های کانالی را برای شناسایی تغییرات تحلیل می‌کند.  یکی از چالش‌های کلیدی در زمینه شناسایی تغییرات، توزیع نامتعادل کلاس‌ها (مانند ساختمان‌های بدون تغییر، سازه‌های جدید و ساختمان‌های تخریب‌شده) است. برای حل این مشکل، از روش­هایی نظیر تقویت مؤثرتر داده‌ها و استخراج قطعات همپوشان در مرحله پیش‌پردازش استفاده ­شده ­است. روش پیشنهادی بر روی یک مجموعه‌داده استریو از ماهواره GeoEye-1 با قدرت تفکیک 0/5 متر و یک مجموعه‌داده استریو هوایی  با قدرت تفکیک 0/08 متر پیاده‌سازی شده است. با اعمال روش پیشنهادی در آزمایش‌ها، ضرایب کاپای ۹۴% و ۹۳% برای مجموعه‌داده‌های ماهواره‌ای و هوایی به‌دست‌آمده است که در مقایسه با سایر روش­های پیشرفته مانند ChangeFormer با ضریب کاپا ۹۱% برای هر دو مجموعه‌داده، بهبود قابل‌ملاحظه‌ای (افزایش ۳ درصدی ضریب کاپا) حاصل شده است. این مدل با بهبود استخراج ویژگی‌ها و عملکرد مناسب روی داده‌های متنوع، به ابزاری قدرتمند برای نظارت بر محیط‌های شهری تبدیل شده و راهکاری مقیاس‌پذیر و قابل‌اعتماد برای برنامه‌ریزی و مدیریت شهری ارائه می‌دهد.
 

واژه‌های کلیدی: داده‌های سنجش از دور سه‌بعدی، تشخیص تغییر چندکلاسه ساختمانی، شبکه‌های مبدل، بلوک‌های توجه مکانی و کانالی، افزایش داده.
متن کامل [PDF 2201 kb]   (106 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: سنجش از دور
دریافت: 1403/10/15 | پذیرش: 1404/3/18 | انتشار الکترونیک پیش از انتشار نهایی: 1404/5/14 | انتشار: 1404/6/9
فهرست منابع
1. [1] X. Peng, L. Zhang, H. Sun, and L. Ma, "Optical remote sensing image change detection based on attention mechanism and image difference", IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 9, 2020. [DOI:10.1109/TGRS.2020.3033009]
2. [2] L. Li, Y. Bian, H. Zhu, and Z. Shao, "Urban building change detection in SAR images using combined differential image and residual U-Net network", Remote Sensing, vol. 11, no. 9, pp. 1091-1091, 2019. [DOI:10.3390/rs11091091]
3. [3] Z. Zheng, J. Wu, A. Zhen, et al., "Building damage assessment for rapid disaster response with a deep object-based semantic change detection framework: From natural disasters to man-made disasters", Remote Sensing of Environment, vol. 265, 2021. [DOI:10.1016/j.rse.2021.112636]
4. [4] A. H. Chughtai, H. Abbasi, and I. R. Karas, "A review on change detection method and accuracy assessment for land use land cover", Remote Sensing Applications: Society and Environment, vol. 22, 2021. [DOI:10.1016/j.rsase.2021.100482]
5. [5] J. C. Padró, A. Muñoz, A. Pons, et al., "Comparison of four UAV georeferencing methods for environmental monitoring purposes focusing on the combined use with airborne and satellite remote sensing platforms", International Journal of Applied Earth Observation and Geoinformation, vol. 75, 2019. [DOI:10.1016/j.jag.2018.10.018]
6. [6] S. Pang, X. Yang, L. Zhang, and H. Lin, "Object-based analysis of airborne LiDAR data for building change detection", Remote Sensing, vol. 6, no. 11, pp. 10733-10749, 2014. [DOI:10.3390/rs61110733]
7. [7] R. Qin, J. Tian, and P. Reinartz, "3D change detection - Approaches and applications", 2016. [DOI:10.1016/j.isprsjprs.2016.09.013]
8. [8] A. Sasagawa, R. Shibasaki, M. Nakagawa, and A. Ichikawa, "Investigation on automatic change detection using pixel-changes and DSM-changes with ALOS-PRISM triplet images", International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 40, no. 7/W2, pp. 213-217, 2013. [DOI:10.5194/isprsarchives-XL-7-W2-213-2013]
9. [9] J. Xu, X. Zhang, Y. Zhao, et al., "Remote sensing change detection based on multidirectional adaptive feature fusion and perceptual similarity", Remote Sensing, vol. 13, no. 15, pp. 3053-3053, 2021. [DOI:10.3390/rs13153053]
10. [10] D. Peng, Y. Zhang, and H. Guan, "End-to-end change detection for high resolution satellite images using improved UNet++", Remote Sensing, vol. 11, no. 11, 2019. [DOI:10.3390/rs11111382]
11. [11] A. Shafique, I. Shafique, and T. M. Khan, "Deep learning-based change detection in remote sensing images: A review", 2022. [DOI:10.3390/rs14040871]
12. [12] L. Khelifi and M. Mignotte, "Deep learning for change detection in remote sensing images: Comprehensive review and meta-analysis", IEEE Access, 2020. [DOI:10.1109/ACCESS.2020.3008036]
13. [13] H. Chen and Z. Shi, "A spatial-temporal attention-based method and a new dataset for remote sensing image change detection", Remote Sensing, 2020. [DOI:10.3390/rs12101662]
14. [14] Y. Zhan, L. Wang, Z. Liu, et al., "Change detection based on deep Siamese convolutional network for optical aerial images", IEEE Geoscience and Remote Sensing Letters, 2017. [DOI:10.1109/LGRS.2017.2738149]
15. [15] J. Xue, X. Liu, C. Ma, et al., "Multi-feature enhanced building change detection based on semantic information guidance", Remote Sensing, vol. 13, no. 20, 2021. [DOI:10.3390/rs13204171]
16. [16] W. Zhang and X. Lu, "The spectral-spatial joint learning for change detection in multispectral imagery", Remote Sensing, 2019. [DOI:10.3390/rs11030240]
17. [17] S. Fang, Z. Li, Y. Wang, and J. Wang, "SNUNet-CD: A densely connected Siamese network for change detection of VHR images", IEEE Geoscience and Remote Sensing Letters, vol. 19, 2021. [DOI:10.1109/LGRS.2021.3056416]
18. [18] Q. Guo, Z. Lin, C. Yang, and Z. Wang, "IDET: Iterative difference-enhanced transformers for high-quality change detection", arXiv preprint, arXiv:2207.09240, 2022.
19. [19] J. Chen, Y. Chen, X. Liu, and M. Du, "DASNet: Dual attentive fully convolutional Siamese networks for change detection in high-resolution satellite images", IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, 2021. [DOI:10.1109/JSTARS.2020.3037893]
20. [20] H. Chen, Z. Qi, and Z. Shi, "Remote sensing image change detection with transformers", IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-14, 2021. [DOI:10.1109/TGRS.2021.3095166]
21. [21] W. G. C. Bandara and V. M. Patel, "A transformer-based Siamese network for change detection", IEEE, 2022. [DOI:10.1109/IGARSS46834.2022.9883686]
22. [22] H. Mohammadi and F. Samadzadegan, "An object-based framework for building change analysis using 2D and 3D information of high-resolution satellite images", Advances in Space Research, vol. 66, no. 6, pp. 1386-1404, 2020. [DOI:10.1016/j.asr.2020.05.041]
23. [23] I. de Gélis, S. Lefèvre, and T. Corpetti, "Siamese KPConv: 3D multiple change detection from raw point clouds using deep learning", ISPRS Journal of Photogrammetry and Remote Sensing, vol. 197, pp. 274-291, 2023. [DOI:10.1016/j.isprsjprs.2023.02.001]
24. [24] T. Ku, M. L. Nguyen, P. Nguyen, et al., "SHREC 2021: 3D point cloud change detection for street scenes", Computer Graphics, vol. 99(C), pp. 192-200, 2021. [DOI:10.1016/j.cag.2021.07.004]
25. [25] V. Marsocci, A. Corsini, and L. Barbato, "Inferring 3D change detection from bitemporal optical images", ISPRS Journal of Photogrammetry and Remote Sensing, vol. 196, 2023. [DOI:10.1016/j.isprsjprs.2022.12.009]
26. [26] M. Gomroki, M. Hasanlou, and J. Chanussot, "Automatic 3D multiple building change detection model based on encoder-decoder network using highly unbalanced remote sensing datasets", IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023. [DOI:10.1109/JSTARS.2023.3328561]
27. [27] G. King and L. Zeng, "Logistic regression in rare events data", Political Analysis, vol. 9, no. 2, pp. 137-163, 2001. [DOI:10.1093/oxfordjournals.pan.a004868]
28. [28] E. D. Cubuk, B. Zoph, D. Mane, et al., "Randaugment: Practical automated data augmentation with a reduced search space", in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition Workshops, 2020. [DOI:10.1109/CVPRW50498.2020.00359]
29. [29] M. H. Guo, J. Lu, C. Dong, et al., "Attention mechanisms in computer vision: A survey", 2022.
30. [30] P. Shaw, J. Uszkoreit, and A. Vaswani, "Self-attention with relative position representations", arXiv preprint, arXiv:1803.02155, 2018. [DOI:10.18653/v1/N18-2074]
31. [31] K. Song and J. Jiang, "AGCDetNet: An attention-guided network for building change detection in high-resolution remote sensing images", IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, 2021. [DOI:10.1109/JSTARS.2021.3077545]
32. [32] K. Wu, Z. Xu, Z. Wang, et al., "TinyViT: Fast pretraining distillation for small vision transformers", Springer, 2022. [DOI:10.1007/978-3-031-19803-8_5]
33. [33] H. Chen, Z. Qi, and Z. Shi, "Remote sensing image change detection with transformers", IEEE Transactions on Geoscience and Remote Sensing, vol. 60, 2022. [DOI:10.1109/TGRS.2021.3095166]
34. [34] A. Mohammadian and F. Ghaderi, "SiamixFormer: A fully-transformer Siamese network with temporal fusion for accurate building detection and change detection in bi-temporal remote sensing images", International Journal of Remote Sensing, vol. 44, no. 12, 2023. [DOI:10.1080/01431161.2023.2225228]
ارسال پیام به نویسنده مسئول


XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Eftekhari A, Samadzadegan F, Dadrass javan F. Multiclass Building Change Detection Using Deep Learning Networks Based on 3D Aerial and Satellite Datasets. jgit 2025; 13 (1) :95-120
URL: http://jgit.kntu.ac.ir/article-1-972-fa.html

افتخاری اکرم، صمدزادگان فرهاد، دادرس جوان فرزانه. شناسایی تغییرات چند کلاسه ساختمانی با استفاده از شبکه های یادگیری عمیق مبتنی بر داده های سه بعدی هوایی و ماهواره ای. مهندسی فناوری اطلاعات مکانی. 1404; 13 (1) :95-120

URL: http://jgit.kntu.ac.ir/article-1-972-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 13، شماره 1 - ( 3-1404 ) برگشت به فهرست نسخه ها
نشریه علمی-پژوهشی مهندسی فناوری اطلاعات مکانی Engineering Journal of Geospatial Information Technology
Persian site map - English site map - Created in 0.2 seconds with 38 queries by YEKTAWEB 4725