1. [1] E. Berger, O. Frör, and R. B. Schäfer, "Salinity impacts on river ecosystem processes: a critical mini-review," Philosophical Transactions of the Royal Society B, vol. 374, no. 1764, p. 20180010, 2019. [ DOI:10.1098/rstb.2018.0010] 2. [2] B. Biemond, H. E. de Swart, and H. A. Dijkstra, "Quantification of salt transports due to exchange flow and tidal flow in estuaries," Journal of Geophysical Research: Oceans, vol. 129, no. 11, p. e2024JC021294, 2024. [ DOI:10.1029/2024JC021294] 3. [3] M. Halimi and Z. M. Isa, "Advection-Diffusion Equation with Spatially Dependent Coefficients for Instantaneous Pollutant Injection in a River," Frontiers in Water and Environment, vol. 5, no. 1, pp. 1-10, 2024. [ DOI:10.37934/fwe.5.1.110] 4. [4] R. Szymkiewicz, "A simplified approach for simulating pollutant transport in small rivers with dead zones using convolution," Journal of Hydrology and Hydromechanics, vol. 72, no. 4, pp. 538-546, 2024. [ DOI:10.2478/johh-2024-0022] 5. [5] J. Xiong, J. Shen, and Q. Qin, "Exchange flow and material transport along the salinity gradient of a long estuary," Journal of Geophysical Research: Oceans, vol. 126, no. 5, p. e2021JC017185, 2021. [ DOI:10.1029/2021JC017185] 6. [6] J. M. Hunter et al., "Framework for developing hybrid process-driven, artificial neural network and regression models for salinity prediction in river systems," HESS, vol. 22, no. 5, pp. 2987-3006, 2018. [ DOI:10.5194/hess-22-2987-2018] 7. [7] J. Ubah, L. Orakwe, K. Ogbu, J. Awu, I. Ahaneku, and E. Chukwuma, "Forecasting water quality parameters using artificial neural network for irrigation purposes," Sci. Rep., vol. 11, no. 1, p. 24438, 2021. [ DOI:10.1038/s41598-021-04062-5] 8. [8] W. Chen, W. Liu, W. Huang, and H. Liu, "Prediction of salinity variations in a tidal estuary using artificial neural network and three-dimensional hydrodynamic models," Computational Water, Energy, and Environmental Engineering, vol. 6, no. 01, p. 107, 2017. [ DOI:10.4236/cweee.2017.61009] 9. [9] R. Zheng, Z. Sun, J. Jiao, Q. Ma, and L. Zhao, "Salinity Prediction Based on Improved LSTM Model in the Qiantang Estuary, China," Journal of Marine Science and Engineering, vol. 12, no. 8, p. 1339, 2024. [ DOI:10.3390/jmse12081339] 10. [10] W. Huang and S. Foo, "Neural network modeling of salinity variation in Apalachicola River," Water Res., vol. 36, no. 1, pp. 356-362, 2002. [ DOI:10.1016/S0043-1354(01)00195-6] 11. [11] A. M. Melesse et al., "River water salinity prediction using hybrid machine learning models," Water, vol. 12, no. 10, p. 2951, 2020. [ DOI:10.3390/w12102951] 12. [12] J. Hu, B. Liu, and S. Peng, "Forecasting salinity time series using RF and ELM approaches coupled with decomposition techniques," Stoch. Environ. Res. Risk Assess., vol. 33, pp. 1117-1135, 2019. [ DOI:10.1007/s00477-019-01691-1] 13. [13] M. Kulisz, J. Kujawska, Z. Aubakirova, and E. Wojtas, "Prediction of river salinity with artificial neural networks," in Journal of Physics: Conference Series, 2023, vol. 2676, no. 1: IOP Publishing, p. 012004. [ DOI:10.1088/1742-6596/2676/1/012004] 14. [14] K. M. R. Rasha, "Salinity Prediction at the Bhairab River in the South-Western Part of Bangladesh Using Artificial Neural Network," Nature Environment and Pollution Technology, vol. 21, no. 3, pp. 1431-1438, 2022. [ DOI:10.46488/NEPT.2022.v21i03.052] 15. [15] P. Duc, "Harnessing Lstm and Xgboost Algorithms for Salinity Prediction in Mekong Delta's Main Rivers," Available at SSRN 4965853. 16. [16] M. Karbasi et al., "Multi-step ahead forecasting of electrical conductivity in rivers by using a hybrid Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) model enhanced by Boruta-XGBoost feature selection algorithm," Sci. Rep., vol. 14, no. 1, p. 15051, 2024. [ DOI:10.1038/s41598-024-65837-0] 17. [17] M. Niazkar et al., "Applications of XGBoost in water resources engineering: A systematic literature review (Dec 2018-May 2023)," Environmental Modelling & Software, vol. 174, p. 105971, 2024. [ DOI:10.1016/j.envsoft.2024.105971] 18. [18] R. Dehghani and D. Abbaspour, "A Comparison of Statistical and Intelligent Methods for Estimating River Salinity: A Case Study of Simineroud, Western Azerbaijan, Iran," (in Fa), International Bulletin of Water Resources and Development, vol. 2, no. 3, p. 182, 2014. 19. [19] S. Kanani, G. Asadollahfardi, and A. Ghanbari, "Application of artificial neural network to predict total dissolved solid in Achechay River basin," World Applied Sciences Journal, vol. 4, no. 5, pp. 646-654, 2008. 20. [20] T. Hastie, R. Tibshirani, and J. Friedman, "The elements of statistical learning. Springer series in statistics," New York, NY, USA, 2001. [ DOI:10.1007/978-0-387-21606-5] 21. [21] T. K. Ho, "Random decision forests," in Proceedings of 3rd international conference on document analysis and recognition, 1995, vol. 1: IEEE, pp. 278-282. [ DOI:10.1109/ICDAR.1995.598994] 22. [22] T. K. Ho, "The random subspace method for constructing decision forests," IEEE transactions on pattern analysis and machine intelligence, vol. 20, no. 8, pp. 832-844, 1998. [ DOI:10.1109/34.709601] 23. [23] T. Chen and C. Guestrin, "Xgboost: A scalable tree boosting system," in Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785-794 , 2016. [ DOI:10.1145/2939672.2939785]
|