1. [1] D. Landgrebe, "Hyperspectral image data analysis," Signal Processing Magazine, IEEE, Vol. 19, pp. 17-28, 2002. [ DOI:10.1109/79.974718] 2. [2] M. T. Eismann, "Hyperspectral remote sensing," University of Maryland, 2012. [ DOI:10.1117/3.899758] 3. [3] S. Vishnu, R. R. Nidamanuri, and R. Bremananth, "Spectral material mapping using hyperspectral imagery: a review of spectral matching and library search methods," Geocarto International, Vol. 28, pp. 171-190, 2013. [ DOI:10.1080/10106049.2012.665498] 4. [4] J.-S. Lee and E. Pottier, Polarimetric radar imaging: from basics to applications, CRC press, 2009. [ DOI:10.1201/9781420054989] 5. [5] M. Jafari, Y. Maghsoudi, M. J. V. Zoej, "A New Method for Land Cover Characterization and Classification of Polarimetric SAR Data Using Polarimetric Signatures", Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of, Vol . 8, pp. 3595-3607, 2015. 6. [6] Z. Qi, A. G.-O. Yeh, X. Li, and Z. Lin, "A novel algorithm for land use and land cover classification using RADARSAT-2 polarimetric SAR data," Remote Sensing of Environment, Vol. 118, pp. 21-39, 2012. [ DOI:10.1016/j.rse.2011.11.001] 7. [7] M. Jafari, Y. Maghsoudi, and M. J. V. Zoej, "Analyzing polarimetric signatures for different features in polarimetric SAR data," in Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International, 2014, pp. 2782-2785. [ DOI:10.1109/IGARSS.2014.6947053] 8. [8] M. Jafari, M. Valadanzoej, and Y. Maghsoudi, "Knowledge-based Classification of Polarimetric SAR data using Support Vector Machine-Decision Tree (SVM-DT)," Journal of Geomatics Science and Technology, Vol. 5, pp. 93-108, 2015. 9. [9] M. Jafari, Y. Maghsoudi, and M. Zoej, "A New Component Scattering Model Using Polarimetric Signatures Based Pattern Recognition on Polarimetric SAR Data," Journal of the Indian Society of Remote Sensing, Vol.8, pp. 1-10, 2016. [ DOI:10.1007/s12524-015-0501-1] 10. [10] G. P. Hughes, "On the mean accuracy of statistical pattern recognizers," Information Theory, IEEE Transactions on, Vol. 14, pp. 55-63, 1968. [ DOI:10.1109/TIT.1968.1054102] 11. [11] D. A. Landgrebe, Signal theory methods in multispectral remote sensing vol. 29: John Wiley & Sons, 2005. 12. [12] S. Kumar, "Modular learning through output space decomposition," UNIVERSITY OF TEXAS AT AUSTIN, 2000. 13. [13] M. Fauvel, J. A. Benediktsson, J. Chanussot, and J. R. Sveinsson, "Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles," Geoscience and Remote Sensing, IEEE Transactions on, Vol. 46, pp. 3804-3814, 2008. [ DOI:10.1109/TGRS.2008.922034] 14. [14] J. Gualtieri and S. Chettri, "Support vector machines for classification of hyperspectral data," in Geoscience and Remote Sensing Symposium, 2000. Proceedings. IGARSS 2000, pp. 813-815. [ DOI:10.1109/IGARSS.2000.861712] 15. [15] M. Pal and P. M. Mather, "Assessment of the effectiveness of support vector machines for hyperspectral data," Future Generation Computer Systems, Vol. 20, pp. 1215-1225, 2004. [ DOI:10.1016/j.future.2003.11.011] 16. [16] G. Camps-Valls and L. Bruzzone, "Kernel-based methods for hyperspectral image classification," Geoscience and Remote Sensing, IEEE Transactions on, Vol. 43, pp. 1351-1362, 2005. [ DOI:10.1109/TGRS.2005.846154] 17. [17] G. Mercier and M. Lennon, "Support vector machines for hyperspectral image classification with spectral-based kernels," in Geoscience and Remote Sensing Symposium, IGARSS2003, 2003, pp. 288-290. [ DOI:10.1109/IGARSS.2003.1293752] 18. [18] Y. Huang, J. Cai, L. Ji, and Y. Li, "Classifying G-protein coupled receptors with bagging classification tree," Computational biology and chemistry, Vol. 28, pp. 275-280, 2004. [ DOI:10.1016/j.compbiolchem.2004.08.001] 19. [19] A. Liaw and M. Wiener, "Classification and regression by randomForest," R news, Vol. 2, pp. 18-22, 2002. 20. [20] L. K. Hansen and P. Salamon, "Neural network ensembles," IEEE Transactions on Pattern Analysis & Machine Intelligence, pp. 993-1001, 1990. [ DOI:10.1109/34.58871] 21. [21] D. B. Skalak, "Prototype selection for composite nearest neighbor classifiers," University of Massachusetts Amherst, 1997. 22. [22] S. D. Bay, "Nearest neighbor classification from multiple feature subsets," Intelligent data analysis, Vol. 3, pp. 191-209, 1999. [ DOI:10.1016/S1088-467X(99)00018-9] 23. [23] T. G. Dietterich, "Ensemble methods in machine learning," in Multiple classifier systems, ed: Springer, 2000, pp. 1-15. [ DOI:10.1007/3-540-45014-9_1] 24. [24] D. Bahler and L. Navarro, "Combining heterogeneous sets of classifiers: Theoretical and experimental comparison of methods," presented at the 17th National Conference on Artificial Intelligence (AAAI 2000), Workshop on New Research Problems for Machine Learning, 2000. 25. [25] G. Valentini and F. Masulli, "Ensembles of learning machines," in Neural Nets, ed: Springer, 2002, pp. 3-20. [ DOI:10.1007/3-540-45808-5_1] 26. [26] D. Opitz and R. Maclin, "Popular ensemble methods: An empirical study," Journal of Artificial Intelligence Research, pp. 169-198, 1999. 27. [27] G. Giacinto and F. Roli, "An approach to the automatic design of multiple classifier systems," Pattern recognition letters, Vol. 22, pp. 25-33, 2001. [ DOI:10.1016/S0167-8655(00)00096-9] 28. [28] J. M. P. d. Gama, "Combining classification algorithms," University of Porto, 1999. 29. [29] C. Cortes and V. Vapnik, "Support-vector networks," Machine learning, Vol. 20, pp. 273-297, 1995. [ DOI:10.1007/BF00994018] 30. [30] C. J. Burges, "A tutorial on support vector machines for pattern recognition," Data mining and knowledge discovery, Vol. 2, pp. 121-167, 1998. [ DOI:10.1023/A:1009715923555] 31. [31] V. N. Vapnik and V. Vapnik, Statistical learning theory vol. 1: Wiley New York, 1998. 32. [32] H.-C. Kim, S. Pang, H.-M. Je, D. Kim, and S.-Y. Bang, "Support vector machine ensemble with bagging," in Pattern recognition with support vector machines, ed: Springer, 2002, pp. 397-408. [ DOI:10.1007/3-540-45665-1_31] 33. [33] Z.-H. Zhou, Ensemble methods: foundations and algorithms: CRC Press, 2012. 34. [34] Y. Freund and R. E. Schapire, "Experiments with a new boosting algorithm," in ICML, 1996, pp. 148-156. 35. [35] L. Breiman, "Bagging predictors," Machine learning, Vol. 24, pp. 123-140, 1996. [ DOI:10.1007/BF00058655] 36. [36] B. X. Wang and N. Japkowicz, "Boosting support vector machines for imbalanced data sets," Knowledge and Information Systems, Vol. 25, pp. 1-20, 2010. [ DOI:10.1007/s10115-009-0198-y] 37. [37] Universidad-del-Pais-Vasco. Hyperspectral Remote Sensing Scenes [Online]. Available: http://www.ehu.es/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes 38. [38] Purdue-Research-Foundation. Hyperspectral Images by MultiSpec© [Online]. Available: https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html 39. [39] B. Mojaradi, H. Abrishami-Moghaddam, M. J. V. Zoej, and R. P. Duin, "Dimensionality reduction of hyperspectral data via spectral feature extraction," Geoscience and Remote Sensing, IEEE Transactions on, Vol. 47, pp. 2091-2105, 2009. [ DOI:10.1109/TGRS.2008.2010346] 40. [40] F. van der Meero and W. Bakker, "Cross correlogram spectral matching: application to surface mineralogical mapping by using AVIRIS data from Cuprite, Nevada," Remote Sensing of Environment, Vol. 61, pp. 371-382, 1997. [ DOI:10.1016/S0034-4257(97)00047-3] 41. [41] A. Hay, "The derivation of global estimates from a confusion matrix," International Journal of Remote Sensing, Vol. 9, pp. 1395-1398, 1988. [ DOI:10.1080/01431168808954945] 42. [42] J. Yang and V. Honavar, "Feature subset selection using a genetic algorithm," in Feature extraction, construction and selection, ed: Springer, 1998, pp. 117-136. [ DOI:10.1007/978-1-4615-5725-8_8] 43. [43] R. Leardi, "Application of genetic algorithm-PLS for feature selection in spectral data sets," Journal of Chemometrics, Vol. 14, pp. 643-655, 2000.
https://doi.org/10.1002/1099-128X(200009/12)14:5/6<643::AID-CEM621>3.0.CO;2-E [ DOI:10.1002/1099-128X(200009/12)14:5/63.0.CO;2-E] 44. [44] S. Oreski and G. Oreski, "Genetic algorithm-based heuristic for feature selection in credit risk assessment," Expert systems with applications, Vol. 41, pp. 2052-2064, 2014. [ DOI:10.1016/j.eswa.2013.09.004]
|