[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
داوران::
ثبت نام و اشتراک::
تماس با ما::
تسهیلات پایگاه::
بایگانی مقالات زیر چاپ::
آمار نشریه::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
آمار سایت
مقالات منتشر شده: 335
نرخ پذیرش: 63.1
نرخ رد: 36.9
میانگین داوری: 208 روز
میانگین انتشار: 343 روز
..
:: دوره 12، شماره 4 - ( 12-1403 ) ::
جلد 12 شماره 4 صفحات 26-1 برگشت به فهرست نسخه ها
ترکیب مشاهدات سامانه تعیین موقعیت جهانی و رادار با روزنه مصنوعی جهت تولید مدل تأخیر یونسفری
الناز یگانه سیاهکل ، یزدان عامریان* ، سعید حاجی‌آقاجانی
دانشگاه صنعتی خواجه نصیرالدین طوسی
چکیده:   (688 مشاهده)
تأخیر امواج مایکروویو در اثر عبور از محیط یونسفر، دقت تعیین موقعیت با استفاده GPS را کاهش می‌دهد. علاوه بر مشاهدات GPS، اثر یونسفر اندازه‌گیری‌های راداری مخصوصا در باند L را تحت تأثیر قرار می‌دهد. از این رو برآورد اثر یونسفر در کاربرد‌های گوناگون از داده ماهواره‌ای امری ضروری است. با توجه به نحوه‌ توزیع گیرنده­های GPS و توان تفکیک زمانی بالای مشاهدات آنها، TEC حاصل از مشاهدات، توان تفکیک مکانی پایینی دارد. از طرف دیگر مشاهدات رادار با روزنه مصنوعی با داشتن تفکیک مکانی بالا با پوشش جهانی، امکان برآورد پارامتر TEC را با توان تفکیک مکانی بالا فراهم می‌کند اما نتایج دارای توان تفکیک زمانی پایینی می­باشند. در این مطالعه از روش پیش‌بینی کریجینگ مکانی-زمانی به منظور تلفیق مشاهدات VTEC تفاضلی حاصل از InSAR و GPS استفاده شده و مدل پیش‌بینی تأخیر یونسفری با تفکیک مکانی و زمانی بالا برای محدوده­ای واقع در آمریکای شمالی ارائه شده است. نتایج پیش‌بینی VTEC تفاضلی با روش کریجینگ و مدل تجربی IRI با مقادیر دقیق TEC تفاضلی حاصل از GPS که در پیش‌بینی وارد نشده اند، در موقعیت IPPs ارزیابی شده و RMSE محاسبه گردید. RMSE خطای VTEC تفاضلی حاصل از پیش‌بینی کریجینگ و مدل IRI در موقعیت IPP  برای ساعت 13:45روزهای 58 و 70 از سال به ترتیب برابر 91/1 و 11/2 TECU، برای ساعت 13 روزهای 70 و 84 از سال به ترتیب برابر 65 /0 و  75/0 TECU، برای ساعت 13 روزهای 84 و 99 از سال به ترتیب برابر 54/2 و  82/3 TECU  و برای ساعت 20/14 روزهای 99 و 158 از سال به ترتیب برابر 50/7 و 95/7 محاسبه شد. این نتایج توانایی روش کریجینگ مکانی-زمانی را در تخمین VTEC تفاضلی در یک بازه مکانی و زمانی محدود در منطقه مورد مطالعه و در مقایسه با مدل IRI نشان می‌دهند.
 
واژه‌های کلیدی: تأخیر یونسفری، محتوای الکترونی کلی، تداخل‌سنجی راداری، پیش‌بینی کریجینگ مکانی-زمانی
متن کامل [PDF 1730 kb]   (74 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: ژئودزی (عمومی)
دریافت: 1401/3/31 | پذیرش: 1402/6/27 | انتشار الکترونیک پیش از انتشار نهایی: 1403/11/14 | انتشار: 1403/12/27
فهرست منابع
1. [1] S. K. Llewellyn and R. B. Bent, "Documentation and Description of the Bent Ionospheric Model," Planetary and Space Science, vol. 4, pp. 545-545, July. 1973. [DOI:10.21236/AD0772733]
2. [2] Sh. Khoshgovari, Y. Amerian, and H. Mahbuby, "Total Electron Content Modeling in Terms of Spherical Radial Basis Functions over Iran," Journal of the Earth and Space Physics, vol. 46, pp. 67-80, Jan. 2020.
3. [3] J. Asgari and A. R. Amiri-Simkooei, "Analysis and Prediction of GNSS Estimated Total Electron Contents," Journal of the Earth and Space Physics, vol. 37, no. 1, pp. 11-2, Oct. 2011.
4. [4] N. Abdi, A. R. Azmoudeh Ardalan, and R. Karimi, "Combination of GPS and Satellite Altimetry Observations for Local Ionosphere Modeling Over Iran " Journal of Geomatics Science and Technology, vol. 7, no. 3, pp. 109-12, Sep. 2018.
5. [5] A. Shahbazi, "Investigation Of Methodologies for Atmospheric Corrections in InSAR," M.S. thesis, University of Tehran, College of Engineering Department of Geomatics Engineering, 2011.
6. [6] S. Jafari, "Evaluation and Implementation of Methods for InSAR Atmospheric Correction," University of Tafresh, Department of Surveying and Geomatics Engineering, 1393.
7. [7] S. H. Aghajani and B. Vosoghi, "Tropospheric Delay Estimation from InSAR Observation," in National Conference and Exhibition of Surveying Engineering and Spatial Information; Geomatics, Teh. , 2017.
8. [8] H. Fattahi and F. Amelung, "InSAR bias and uncertainty due to the systematic and stochastic tropospheric delay". Journal of Geophysical Research: Solid Earth, vol.120, no. 12, pp. 8758-8773, Nov. 2015. [DOI:10.1002/2015JB012419]
9. [9] R. Jolivet, P. Agram, N. Lin, M. Simons,M. Doin, G. Peltzer and Z. LI, "Improving InSAR geodesy using Global Atmospheric Models". Journal of Geophysical Research: Solid Earth, vol. 119, no. 3, pp. 2324-2341, Feb 2014. [DOI:10.1002/2013JB010588]
10. [10] Z. Li, E. J. Fielding, P. Cross, and J. Muller, "Interferometric synthetic aperture radar atmospheric correction: Medium Resolution Imaging Spectrometer and Advanced Synthetic Aperture Radar integration". Geophysical Research Letters, vol. 33, no. 6, Mar. 2006. [DOI:10.1029/2005GL025299]
11. [11] K. E. Mattar and A. L. Gray, "Reducing ionospheric electron density errors in satellite radar interferometry applications". Canadian Journal of Remote Sensing, vol. 28, no. 4, pp. 593-600, Jun. 2002. [DOI:10.5589/m02-051]
12. [12] F. Meyer, R. Bamler, N. Jakowski, and T. Fritz, "The Potential of Low-Frequency SAR Systems for Mapping Ionospheric TEC Distributions". IEEE Geoscience and Remote Sensing Letters, vol. 3, no. 4, pp. 560-564, Oct. 2006. [DOI:10.1109/LGRS.2006.882148]
13. [13] U. Wegmüller, C. Werner, O. Frey, C. Magnard, and T. Strozzi, "Reformulating the Split-Spectrum Method to Facilitate the Estimation and Compensation of the Ionospheric Phase in SAR Interferograms". Procedia Computer Science, vol. 138, pp. 318-325, Jan. 2018. [DOI:10.1016/j.procs.2018.10.045]
14. [14] R. Brcic, A. Parizzi, M. Eineder, R. Bamler, and F. Meyer. "Estimation and compensation of ionospheric delay for SAR interferometry". in 2010 IEEE International Geoscience and Remote Sensing Symposium, 2010. [DOI:10.1109/IGARSS.2010.5652231]
15. [15] F. Meyer, R. Bamler, N. Jakowski, and T. Fritz, "Methods for small scale ionospheric TEC mapping from broadband L-B and SAR data", International Geoscience and Remote Sensing Symposium (IGARSS), 10.1109/IGARSS, 2006, 957. [DOI:10.1109/IGARSS.2006.957]
16. [16] G. Gomba, M. Eineder, A. Parizzi, and R. Bamler. "High-resolution estimation of ionospheric phase screens through semi-focusing processing". in 2014 IEEE Geoscience and Remote Sensing Symposium, 2014. [DOI:10.1109/IGARSS.2014.6946344]
17. [17] F. Arikan, H. Nayir, U. Sezen, and O. Arikan, "Estimation of single station interfrequency receiver bias using GPS-TEC". Radio Science, vol 43, no. 4 , July. 2008. [DOI:10.1029/2007RS003785]
18. [18] U. Sezen, F. Arikan, O. Arikan, O. Ugurlu, and A. Sadeghimorad, "Online automatic near-real time estimation of GPS-TEC: IONOLAB-TEC". Space Weather, vol. 11, no. 5, pp. 297-305, May. 2013. [DOI:10.1002/swe.20054]
19. [19] A. Freeman, "Calibration of linearly polarized polarimetric SAR data subject to Faraday rotation". IEEE Transactions on Geoscience and Remote Sensing, vol.42, no. 8, pp. 1617-1624, Aug. 2004. [DOI:10.1109/TGRS.2004.830161]
20. [20] F. J. Meyer and J. Nicoll. "The Impact of the Ionosphere on Interferometric SAR Processing". in IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium, 2008. [DOI:10.1109/IGARSS.2008.4779010]
21. [21] M. Jehle, M. Rüegg, D. Small, E. Meier, and D. Nüesch, "Estimation of ionospheric TEC and Faraday rotation for L-band SAR". in SPIE Remote Sensing Conference. vol. 5979. 2005, PP. 252-260. [DOI:10.1117/12.627618]
22. [22] X. Pi, A. Freeman, B. Chapman, P. Rosen, and Z. Li, "Imaging ionospheric inhomogeneities using spaceborne synthetic aperture radar". J. Geophys. Res, vol. 116, Apr. 2011. [DOI:10.1029/2010JA016267]
23. [23] R. Brcic, A. Parizzi, M. Eineder, R. Bamler, and F. Meyer. "Ionospheric effects in SAR interferometry: An analysis and comparison of methods for their estimation". in 2011 IEEE International Geoscience and Remote Sensing Symposium, 2011. [DOI:10.1109/IGARSS.2011.6049351]
24. [24] G. Gomba, A. Parizzi, F. De Zan, M. Eineder, and R. Bamler, "Toward Operational Compensation of Ionospheric Effects in SAR Interferograms": The Split-Spectrum Method. IEEE Transactions on Geoscience and Remote Sensing. vol. 54, no. 3, pp. 1446-1461, Mar. 2016. [DOI:10.1109/TGRS.2015.2481079]
25. [25] P. A. Rosen, S. Hensley, and C. Chen. "Measurement and mitigation of the ionosphere in L-band Interferometric SAR data". in 2010 IEEE Radar Conference. 2010. [DOI:10.1109/RADAR.2010.5494385]
26. [26] H. Fattahi, M. Simons, and P. Agram, "InSAR Time-Series Estimation of the Ionospheric Phase Delay: An Extension of the Split Range-Spectrum Technique". IEEE Transactions on Geoscience and Remote Sensing, vol. 55, no.10, pp. 5984-5996. Jul. 2017. [DOI:10.1109/TGRS.2017.2718566]
27. [27] D. Raucoules and M. de Michele, "Assessing Ionospheric Influence on L-Band SAR Data: Implications on Coseismic Displacement Measurements of the 2008 Sichuan Earthquake". IEEE Geoscience and Remote Sensing Letters, vol. 7, no. 2, pp. 286-290, Apr. 2010. [DOI:10.1109/LGRS.2009.2033317]
28. [28] U. Wegmüller, T. Strozzi, and C. Werner. "Ionospheric path delay estimation using split-beam interferometry". in 2012 IEEE International Geoscience and Remote Sensing Symposium, 2012. [DOI:10.1109/IGARSS.2012.6350630]
29. [29] H. Jung, D. Lee, Z. Lu, and J. Won, "Ionospheric Correction of SAR Interferograms by Multiple-Aperture Interferometry". IEEE Transactions on Geoscience and Remote Sensing, vol. 51, no. 5, pp. 3191-3199, May. 2013. [DOI:10.1109/TGRS.2012.2218660]
30. [30] U. Wegmuller, C. Werner, T. Strozzi, and A. Wiesmann. "Ionospheric Electron Concentration Effects on SAR and INSAR", in 2006 IEEE International Symposium on Geoscience and Remote Sensing, 2006. [DOI:10.1109/IGARSS.2006.956]
31. [31] A. L. Gray, K. E. Mattar, and G. Sofko, "Influence of ionospheric electron density fluctuations on satellite radar interferometry". Geophysical Research Letters, vol. 27, no. 10, pp. 1451-1454, May. 2000. [DOI:10.1029/2000GL000016]
32. [32] H. Jung and W. Lee, "An Improvement of Ionospheric Phase Correction by Multiple-Aperture Interferometry". IEEE Transactions on Geoscience and Remote Sensing, vol. 53, no. 9, pp. 4960-4952, Apr. 2015. [DOI:10.1109/TGRS.2015.2413948]
33. [33] W. Zhu, W. Zhang, Y. He, and W. Qu, "Performance Evaluation of Azimuth Offset Method for Mitigating the Ionospheric Effect on SAR Interferometry". Journal of Sensors, vol. 2017, Jul. 2017. [DOI:10.1155/2017/4587475]
34. [34] E. Musicò, C. Cesaroni, L. Spogli, J.P. Merryman Boncori, G. De Franceschi and R. Seu, "The Total Electron Content From InSAR and GNSS: A Midlatitude Study", IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 11, no. 5, pp. 1725-1733, May. 2018. [DOI:10.1109/JSTARS.2018.2812305]
35. [35] J. Blanch and T. Walter. "Application of Spatial Statistics to Ionosphere Estimation for WAAS". Proceedings of the 2002 National Technical Meeting of The Institute of Navigation, San Diego, CA, Jan. 2002, pp. 719-724.
36. [36] H. Nayir, F. Arikan, O. Arikan, and C. B. Erol, "Total Electron Content Estimation with Reg-Est". Journal of Geophysical Research: Space Physics, vol. 112, no. A11, Nov. 2007. [DOI:10.1029/2007JA012459]
37. [37] F. Arikan, C. B. Erol, and O. Arikan, "Regularized estimation of vertical total electron content from Global Positioning System data", Journal of Geophysical Research: Space Physics, vol. 108, no. A12, Dec. 2003. [DOI:10.1029/2002JA009605]
38. [38] M. Shimada, Y. Muraki, and Y. Otsuka. "Discovery of Anoumoulous Stripes Over the Amazon by the PALSAR onboard ALOS satellite", in IGARSS 2008 IEEE International Geoscience and Remote Sensing Symposium, 2008. [DOI:10.1109/IGARSS.2008.4779009]
39. [39] F. Casu, A. Manconi, A. Pepe, and R. Lanari, "Deformation Time-Series Generation in Are:as char:acterized by Large Displacement Dynamics: The SAR Amplitude Pixel-Offset SBAS Technique," in IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 7, pp. 2752-2763, July. 2011, doi: 10.1109/TGRS.2010.2104325. [DOI:10.1109/TGRS.2010.2104325]
40. [40] N. B. D. Bechor and H. A. Zebker, "Measuring two-dimensional movements using a single InSAR pair", Geophysical Research Letters, vol. 33, no. 16 , Aug. 2006. [DOI:10.1029/2006GL026883]
41. [41] A. Lichtenstern, "Kriging methods in spatial statistics, in Department of Mathematics", B.S. thesis, Technische Universitat Munchen, Munchen, 2013.
42. [42] R. Webster and M. Oliver, "Geostatistics for Environmental Scientists". Geostatistics for Environmental Scientists, 2 ed., 2007. 10.1002/9780470517277. [DOI:10.1002/9780470517277]
43. [43] H. Wackernagel, "Multivariate Geostatistics: An Introduction with Applications",vol. 388, 3 ed., Springer-Verlag Berlin Heidelberg. XV, 2003.
44. [44] T. Gneiting, F. Balabdaoui, and A. E. Raftery, "Probabilistic forecasts, calibration and sharpness", Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 69, no. 2, pp. 243-268, Mar. 2007. [DOI:10.1111/j.1467-9868.2007.00587.x]
45. [45] N. Cressie, "Spatial Prediction and Kriging, in Statistics for Spatial Data", ch3, 1993, pp. 105-209, 10.1002/9781119115151. [DOI:10.1002/9781119115151.ch3]
46. [46] P. Goovaerts,"Geostatistics for Natural Resources Evaluation", Applied Geostatistics Series, Oxford University Press on Demand, Geological Magazine, vol. 135, no. 6, 1997, pp. 819-842.
47. [47] J. Xu and H. Shu, "Spatio-temporal kriging based on the product-sum model: some computational aspects", Earth Science Informatics, vol. 8, pp. 639-648, Dec. 2014. [DOI:10.1007/s12145-014-0195-x]
48. [48] L. Cesare, D. Myers, and D. Posa, "Spatial-Temporal Modeling of SO2 in Milan District", Kluwer Academic Pubtishers, vol. 2, pp. 1031-1042, Jan. 1997. [DOI:10.1007/978-94-011-5726-1_34]
49. [49] I. Rodríguez-Iturbe and J. M. Mejía, "The design of rainfall networks in time and space". Water Resources Research, vol. 10, no. 4, pp. 713-728, Aug. 1974. [DOI:10.1029/WR010i004p00713]
50. [50] F. G Montero J, Mateu J, "Spatial and Spatio‐Temporal Geostatistical Modeling and Kriging", 2015, pp. 266-273, 10.1002/9781118762387. [DOI:10.1002/9781118762387]
ارسال پیام به نویسنده مسئول


XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Yeganeh Siyahkal E, Amerian Y, Haji-Aghajany S. Integration of GPS and SAR observations For Ionospheric Delay Model Generation. jgit 2025; 12 (4) :1-26
URL: http://jgit.kntu.ac.ir/article-1-884-fa.html

یگانه سیاهکل الناز، عامریان یزدان، حاجی‌آقاجانی سعید. ترکیب مشاهدات سامانه تعیین موقعیت جهانی و رادار با روزنه مصنوعی جهت تولید مدل تأخیر یونسفری. مهندسی فناوری اطلاعات مکانی. 1403; 12 (4) :1-26

URL: http://jgit.kntu.ac.ir/article-1-884-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 12، شماره 4 - ( 12-1403 ) برگشت به فهرست نسخه ها
نشریه علمی-پژوهشی مهندسی فناوری اطلاعات مکانی Engineering Journal of Geospatial Information Technology
Persian site map - English site map - Created in 0.11 seconds with 38 queries by YEKTAWEB 4704