1. [1] H. L. Kluepfel, "A cellular automaton model for crowd movement and egress simulation", Universität Duisburg-Essen, Fakultät für Physik, 2003. 2. [2] D. Helbing and P. Molnar, "Social force model for pedestrian dynamics", Physical review E, Vol 51, pp. 4282, 1995. [ DOI:10.1103/PhysRevE.51.4282] 3. [3] M. Batty, "Agent-based pedestrian modelling", Advanced spatial analysis: The CASA book of GIS, Vol 81, pp. 81-106, 2003. 4. [4] K. Teknomo, "Application of microscopic pedestrian simulation model", Transportation Research Part F: Traffic Psychology and Behaviour, Vol 9, pp. 15-27, 2006. [ DOI:10.1016/j.trf.2005.08.006] 5. [5] P. M. Torrens, "High-fidelity behaviours for model people on model streetscapes", Annals of GIS, Vol 20, pp. 139-157, 2014. [ DOI:10.1080/19475683.2014.944933] 6. [6] M. Muramatsu, T. Irie, and T. Nagatani, "Jamming transition in pedestrian counter flow", Physica A: Statistical Mechanics and its Applications, Vol 267, pp. 487-498, 1999. [ DOI:10.1016/S0378-4371(99)00018-7] 7. [7] K. Nagel and M. Schreckenberg, "A cellular automaton model for freeway traffic", Journal de physique I, Vol 2, pp. 2221-2229, 1992. [ DOI:10.1051/jp1:1992277] 8. [8] M. Batty, J. DeSyllas, and E. Duxbury, "The discrete dynamics of small-scale spatial events: agent-based models of mobility in carnivals and street parades", International Journal of Geographical Information Science, Vol 17, pp. 673-697, 2003. [ DOI:10.1080/1365881031000135474] 9. [9] M. Batty, J. Desyllas, and E. Duxbury, "Safety in numbers? Modelling crowds and designing control for the Notting Hill Carnival", Urban Studies, Vol 40, pp. 1573-1590, 2003. [ DOI:10.1080/0042098032000094432] 10. [10] P. G. Gipps and B. Marksjö, "A micro-simulation model for pedestrian flows", Mathematics and computers in simulation, Vol 27, pp. 95-105, 1985. [ DOI:10.1016/0378-4754(85)90027-8] 11. [11] S. P. Hoogendoorn, P. H. Bovy, and W. Daamen, "Microscopic pedestrian wayfinding and dynamics modelling", Pedestrian and evacuation dynamics, Vol 123, pp. 154, 2002. 12. [12] S. P. Hoogendoorn and P. H. Bovy, "Pedestrian route-choice and activity scheduling theory and models", Transportation Research Part B: Methodological, Vol 38, pp. 169-190, 2004. [ DOI:10.1016/S0191-2615(03)00007-9] 13. [13] K. Kitazawa and M. Batty, "Pedestrian behaviour modelling", An Application to Retail Movements using a Genetic Algorithm. Centre for Advanced Spatial Analysis, University College London, 2004. 14. [14] F. Camillen, S. Caprì, C. Garofalo, M. Ignaccolo, G. Inturri, A. Pluchino, A. Rapisarda, and S. Tudisco, "Multi agent simulation of pedestrian behavior in closed spatial environments", presented at the Science and Technology for Humanity (TIC-STH), 2009 IEEE Toronto International Conference, 2009. [ DOI:10.1109/TIC-STH.2009.5444471] 15. [15] R. Passini, "Wayfinding: A conceptual framework", Urban Ecology, 5, 17-31, 1981. [ DOI:10.1016/0304-4009(81)90018-8] 16. [16] R. Passini and G. Proulx, "Wayfinding without vision: An experiment with congenitally totally blind people", Environment and Behavior, Vol 20, pp. 227-252, 1988. [ DOI:10.1177/0013916588202006] 17. [17] S. Gwynne, E. R. Galea, M. Owen, P. J. Lawrence, and L. Filippidis, "A review of the methodologies used in the computer simulation of evacuation from the built environment", Building and environment, Vol 34, pp. 741-749, 1999. [ DOI:10.1016/S0360-1323(98)00057-2] 18. [18] M. Haklay, D. O'Sullivan, M. Thurstain-Goodwin, and T. Schelhorn, ""So go downtown": Simulating pedestrian movement in town centres", Environment and Planning B: Planning and Design, Vol 28, pp. 343-359, 2001. [ DOI:10.1068/b2758t] 19. [19] R. G. Golledge, "Place recognition and wayfinding: Making sense of space", Geoforum, Vol 23, pp. 199-214, 1992. [ DOI:10.1016/0016-7185(92)90017-X] 20. [20] B. Leng, J. Wang, W. Zhao, and Z. Xiong, "An extended floor field model based on regular hexagonal cells for pedestrian simulation", Physica A: Statistical Mechanics and its Applications, Vol 402, pp. 119-133, 2014. [ DOI:10.1016/j.physa.2014.01.039] 21. [21] Z. Fu, X. Zhou, K. Zhu, Y. Chen, Y. Zhuang, Y. Hu, L. Yang, C. Chen, and J. Li, "A floor field cellular automaton for crowd evacuation considering different walking abilities", Physica A: Statistical Mechanics and its Applications, Vol 420, pp. 294-303, 2015. [ DOI:10.1016/j.physa.2014.11.006] 22. [22] M. Zhou, H. Dong, D. Wen, X. Yao, and X. Sun, "Modeling of Crowd Evacuation With Assailants via a Fuzzy Logic Approach", 23. [23] M. Dell'Orco, M. Marinelli, and M. Ottomanelli, in Computer-based Modelling and Optimization in Transportation, Eds., Springer, 2014, pp. 237-250. 24. [24] C.-Y. Chen, "A fuzzy-based approach for smart building evacuation modeling", presented at the Innovative Computing, Information and Control (ICICIC), 2009 Fourth International Conference on, 2009. [ DOI:10.1109/ICICIC.2009.16] 25. [25] R. Alizadeh, "A dynamic cellular automaton model for evacuation process with obstacles", Safety Science, Vol 49, pp. 315-323, 2011. [ DOI:10.1016/j.ssci.2010.09.006] 26. [26] Y. Zheng, B. Jia, X.-G. Li, and N. Zhu, "Evacuation dynamics with fire spreading based on cellular automaton", Physica A: Statistical Mechanics and its Applications, Vol 390, pp. 3147-3156, 2011. [ DOI:10.1016/j.physa.2011.04.011] 27. [27] X. Xu, W. Song, and H. Zheng, "Discretization effect in a multi-grid egress model", Physica A: Statistical Mechanics and its Applications, Vol 387, pp. 5567-5574, 2008. [ DOI:10.1016/j.physa.2008.05.058] 28. [28] T. M. Gwizdałła, "Some properties of the floor field cellular automata evacuation model", Physica A: Statistical Mechanics and its Applications, Vol 419, pp. 718-728, 2015. [ DOI:10.1016/j.physa.2014.10.070] 29. [29] W. Daamen and S. Hoogendoorn, "Capacity of doors during evacuation conditions", Procedia Engineering, Vol 3, pp. 53-66, 2010. [ DOI:10.1016/j.proeng.2010.07.007] 30. [30] T. Kretz, A. Grünebohm, and M. Schreckenberg, "Experimental study of pedestrian flow through a bottleneck", Journal of Statistical Mechanics: Theory and Experiment, 2006, p10014, 2006. [ DOI:10.1088/1742-5468/2006/10/P10014] 31. [31] A. Seyfried, O. Passon, B. Steffen, M. Boltes, T. Rupprecht, and W. Klingsch, "New insights into pedestrian flow through bottlenecks", Transportation Science, Vol 43, pp. 395-406, 2009. [ DOI:10.1287/trsc.1090.0263] 32. [32] E. H. Mamdani and S. Assilian, "An experiment in linguistic synthesis with a fuzzy logic controller", International journal of man-machine studies, Vol 7, pp. 1-13, 1975. [ DOI:10.1016/S0020-7373(75)80002-2] 33. [33] L. A. Zadeh, "Fuzzy sets", Information and control, Vol 8, pp. 338-353, 1965. [ DOI:10.1016/S0019-9958(65)90241-X] 34. [34] J. Wąs, B. Gudowski, and P. J. Matuszyk, "Social distances model of pedestrian dynamics", presented at the International Conference on Cellular Automata, 2006. [ DOI:10.1007/11861201_57] 35. [35] A. Seyfried, B. Steffen, W. Klingsch, and M. Boltes, "The fundamental diagram of pedestrian movement revisited", Journal of Statistical Mechanics: Theory and Experiment, 2005, p10002, 2005. [ DOI:10.1088/1742-5468/2005/10/P10002] 36. [36] J. Fang, Z. Qin, H. Hu, Z. Xu, and H. Li, "The fundamental diagram of pedestrian model with slow reaction", Physica A: Statistical Mechanics and its Applications, Vol 391, pp. 6112-6120, 2012. [ DOI:10.1016/j.physa.2012.07.005] 37. [37] J. Zhang, W. Klingsch, A. Schadschneider, and A. Seyfried, "Ordering in bidirectional pedestrian flows and its influence on the fundamental diagram", Journal of Statistical Mechanics: Theory and Experiment, 2012, p02002, 2012. [ DOI:10.1088/1742-5468/2012/02/P02002]
|