[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
داوران::
ثبت نام و اشتراک::
تماس با ما::
تسهیلات پایگاه::
بایگانی مقالات زیر چاپ::
آمار نشریه::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
آمار سایت
مقالات منتشر شده: 308
نرخ پذیرش: 62.7
نرخ رد: 37.3
میانگین داوری: 209 روز
میانگین انتشار: 344 روز
..
:: دوره 6، شماره 1 - ( 3-1397 ) ::
جلد 6 شماره 1 صفحات 99-77 برگشت به فهرست نسخه ها
استخراج تصاویر روزانه دمای سطح زمین با قدرت تفکیک مکانی بالا با استفاده از تلفیق تصاویر لندست و مادیس
پریسا محمدی‌زاده ، سعید حمزه* ، مجید کیاورزمقدم ، علی درویشی بلورانی
دانشگاه تهران
چکیده:   (3587 مشاهده)
دمای سطح زمین یکی از پارامترهای کلیدی و موثر بر مطالعات محیطی میاشد. به دلیل وجود محدودیتهای بودجهای و تکنیکی، سنجندهای که در محدوده حرارتی قدرت تفکیک زمانی و مکانی بالایی داشته باشد، وجود ندارد. از آنجا که قدرت تفکیک مکانی و زمانی بالا به همراه یکدیگر به افزایش قابلیت اطمینان در تحلیل و وضوح تصویر منجر می‌شود، بنابراین بهترین راه فائق آمدن به این مشکل تلفیق تصاویر با قدرت تفکیک مکانی و زمانی بالا می‌باشد. لذا هدف از این مقاله، تهیهی تصاویر دمای سطح با قدرت تفکیک مکانی لندست و قدرت تفکیک زمانی مادیس است که بدین‌منظور از روش SADFAT که جهت تلفیق این تصاویر توسعه داده شده است، استفاده گردید. جهت اجرای روش و ارزیابی نتایج آن از هفت تصویر ماهوارهای لندست 8 در محدودهی طرح توسعه نیشکر واقع در جنوب استان خوزستان مربوط به 3 خرداد، 19خرداد، 20 تیر، 5 مرداد، 21 مرداد، 6 شهریور و 22 شهریور سال 1394 و تصاویر مادیس روزانهی تاریخهای ذکر شده استفاده شد. جهت ارزیابی از شاخص  ضریب همبستگی، خطای جذر میانگین مربعی، میانگین خطای مطلق و شاخص  کیفیت جهانی تصویر استفاده گردید. نتایج بررسیها نشان میدهد که مقادیر شاخصهای ضریب همبستگی، خطای جذر میانگین مربعی، میانگین خطای مطلق و شاخص کیفیت جهانی تصویر بین دمای سطح مشاهده شده و پیشبینی شده به ترتیب بین 99/0-85/0، 32/1-73/0، 73/1-58/0 و 9973/0-9124/0 متغیر است. نتایج پژوهش بیانگر دقت بالا و قابل قبول روش SADFAT جهت تهیهی روزانه‌ی تصاویر دمای سطح با قدرت تفکیک مکانی لندست در منطقه مورد مطالعه میباشد.
واژه‌های کلیدی: تلفیق زمانی و مکانی، تصاویر حرارتی، دمای روزانه سطح زمین، سنجش از دور
متن کامل [PDF 8877 kb]   (2009 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: سنجش از دور
دریافت: 1396/1/19 | پذیرش: 1396/6/26 | انتشار: 1397/3/31
فهرست منابع
1. [1] J. M. Wan, W. Snyder, and Y. L. Zhang, "Validation of land-surface temperature retrieval from space," (in English), Igarss '96 - 1996 International Geoscience and Remote Sensing Symposium: Remote Sensing for a Sustainable Future, Vols I - Iv, pp. 2095-2097, 1996.
2. [2] Q. H. Weng, P. Fu, and F. Gao, "Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data," (in English), Remote Sensing of Environment, vol. 145, pp. 55-67, Apr 5 2014. [DOI:10.1016/j.rse.2014.02.003]
3. [3] N. V. Shabanov et al., "Effect of foliage spatial heterogeneity in the MODIS LAI and FPAR algorithm over broadleaf forests," (in English), Remote Sensing of Environment, vol. 85, no. 4, pp. 410-423, Jun 15 2003. [DOI:10.1016/S0034-4257(03)00017-8]
4. [4] C. E. Woodcock and M. Ozdogan, "Trends in land cover mapping and monitoring," in Land Change Science: Springer, 2012, pp. 367-377.
5. [5] J. G. Masek and G. J. Collatz, "Estimating forest carbon fluxes in a disturbed southeastern landscape: Integration of remote sensing, forest inventory, and biogeochemical modeling," (in English), Journal of Geophysical Research-Biogeosciences, vol. 111, no. G1, Feb 2 2006. [DOI:10.1029/2005JG000062]
6. [6] W. B. Cohen and S. N. Goward, "Landsat's role in ecological applications of remote sensing," (in English), Bioscience, vol. 54, no. 6, pp. 535-545, Jun 2004. [DOI:10.1641/0006-3568(2004)054[0535:LRIEAO]2.0.CO;2]
7. [7] S. P. Healey, W. B. Cohen, Z. Q. Yang, and O. N. Krankina, "Comparison of Tasseled Cap-based Landsat data structures for use in forest disturbance detection," (in English), Remote Sensing of Environment, vol. 97, no. 3, pp. 301-310, Aug 15 2005. [DOI:10.1016/j.rse.2005.05.009]
8. [8] G. P. Asner, "Cloud cover in Landsat observations of the Brazilian Amazon," (in English), International Journal of Remote Sensing, vol. 22, no. 18, pp. 3855-3862, Dec 2001. [DOI:10.1080/01431160010006926]
9. [9] P. V. Jorgensen, "Determination of cloud coverage over Denmark using Landsat MSS/TM and NOAA-AVHRR," (in English), International Journal of Remote Sensing, vol. 21, no. 17, pp. 3363-3368, Nov 2000. [DOI:10.1080/014311600750019976]
10. [10] J. C. Ju and D. P. Roy, "The availability of cloud-free Landsat ETM plus data over the conterminous United States and globally," (in English), Remote Sensing of Environment, vol. 112, no. 3, pp. 1196-1211, Mar 18 2008. [DOI:10.1016/j.rse.2007.08.011]
11. [11] M. C. Gonzalez-Sanpedro, T. Le Toan, J. Moreno, L. Kergoat, and E. Rubio, "Seasonal variations of leaf area index of agricultural fields retrieved from Landsat data," (in English), Remote Sensing of Environment, vol. 112, no. 3, pp. 810-824, Mar 18 2008. [DOI:10.1016/j.rse.2007.06.018]
12. [12] K. J. Ranson, K. Kovacs, G. Sun, and V. I. Kharuk, "Disturbance recognition in the boreal forest using radar and Landsat-7," (in English), Canadian Journal of Remote Sensing, vol. 29, no. 2, pp. 271-285, Apr 2003. [DOI:10.5589/m02-096]
13. [13] G. Camps-Valls, L. Gomez-Chova, J. Munoz-Mari, J. L. Rojo-Alvarez, and M. Martinez-Ramon, "Kernel-based framework for multitemporal and multisource remote sensing data classification and change detection," (in English), Ieee Transactions on Geoscience and Remote Sensing, vol. 46, no. 6, pp. 1822-1835, Jun 2008. [DOI:10.1109/TGRS.2008.916201]
14. [14] M. A. Marfai, H. Almohammad, S. Dey, B. Susanto, and L. King, "Coastal dynamic and shoreline mapping: multi-sources spatial data analysis in Semarang Indonesia," (in English), Environmental Monitoring and Assessment, vol. 142, no. 1-3, pp. 297-308, Jul 2008. [DOI:10.1007/s10661-007-9929-2]
15. [15] W. J. Carper, T. M. Lillesand, and R. W. Kiefer, "The Use of Intensity-Hue-Saturation Transformations for Merging Spot Panchromatic and Multispectral Image Data," (in English), Photogrammetric Engineering and Remote Sensing, vol. 56, no. 4, pp. 459-467, Apr 1990.
16. [16] M. Gonzalez-Audicana, J. L. Saleta, R. G. Catalan, and R. Garcia, "Fusion of multispectral and panchromatic images using improved IHS and PCA mergers based on wavelet decomposition," (in English), Ieee Transactions on Geoscience and Remote Sensing, vol. 42, no. 6, pp. 1291-1299, Jun 2004. [DOI:10.1109/TGRS.2004.825593]
17. [17] V. P. S. Naidu and J. R. Raol, "Pixel-level image fusion using wavelets and principal component analysis," (in English), Defence Science Journal, vol. 58, no. 3, pp. 338-352, May 2008. [DOI:10.14429/dsj.58.1653]
18. [18] T. M. Tu, P. S. Huang, C. L. Hung, and C. P. Chang, "A Fast Intensity-Hue-Saturation Fusion Technique With Spectral Adjustment for IKONOS Imagery," (in English), Ieee Geoscience and Remote Sensing Letters, vol. 1, no. 4, pp. 309-312, Oct 2004. [DOI:10.1109/LGRS.2004.834804]
19. [19] M. Choi, "A new intensity-hue-saturation fusion approach to image fusion with a tradeoff parameter," (in English), Ieee Transactions on Geoscience and Remote Sensing, vol. 44, no. 6, pp. 1672-1682, Jun 2006. [DOI:10.1109/TGRS.2006.869923]
20. [20] Y. Zhang and G. Hong, "An IHS and wavelet integrated approach to improve pan-sharpening visual quality of natural colour IKONOS and QuickBird images," Information Fusion, vol. 6, no. 3, pp. 225-234, 2005. [DOI:10.1016/j.inffus.2004.06.009]
21. [21] K. Amolins, Y. Zhang, and P. Dare, "Wavelet based image fusion techniques - An introduction, review and comparison," (in English), Isprs Journal of Photogrammetry and Remote Sensing, vol. 62, no. 4, pp. 249-263, Sep 2007. [DOI:10.1016/j.isprsjprs.2007.05.009]
22. [22] F. W. Acerbi-Junior, J. G. P. W. Clevers, and M. E. Schaepman, "The assessment of multi-sensor image fusion using wavelet transforms for mapping the Brazilian Savanna," (in English), International Journal of Applied Earth Observation and Geoinformation, vol. 8, no. 4, pp. 278-288, Dec 2006. [DOI:10.1016/j.jag.2006.01.001]
23. [23] V. Rodriguez-Galiano, E. Pardo-Iguzquiza, M. Sanchez-Castillo, M. Chica-Olmo, and M. Chica-Rivas, "Downscaling Landsat 7 ETM+ thermal imagery using land surface temperature and NDVI images," (in English), International Journal of Applied Earth Observation and Geoinformation, vol. 18, pp. 515-527, Aug 2012. [DOI:10.1016/j.jag.2011.10.002]
24. [24] R. Zurita-Milla, G. Kaiser, J. G. P. W. Clevers, W. Schneider, and M. E. Schaepman, "Downscaling time series of MERIS full resolution data to monitor vegetation seasonal dynamics," (in English), Remote Sensing of Environment, vol. 113, no. 9, pp. 1874-1885, Sep 2009. [DOI:10.1016/j.rse.2009.04.011]
25. [25] F. Gao, J. Masek, M. Schwaller, and F. Hall, "On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance," (in English), Ieee Transactions on Geoscience and Remote Sensing, vol. 44, no. 8, pp. 2207-2218, Aug 2006. [DOI:10.1109/TGRS.2006.872081]
26. [26] M. Anderson et al., "Mapping daily evapotranspiration at field to global scales using geostationary and polar orbiting satellite imagery," Hydrol. Earth Syst. Sci. Discuss, vol. 7, pp. 5957-5990, 2010. [DOI:10.5194/hessd-7-5957-2010]
27. [27] A. K. Inamdar, A. French, S. Hook, G. Vaughan, and W. Luckett, "Land surface temperature retrieval at high spatial and temporal resolutions over the southwestern United States," (in English), Journal of Geophysical Research-Atmospheres, vol. 113, no. D7, Apr 9 2008. [DOI:10.1029/2007JD009048]
28. [28] X. L. Zhu, J. Chen, F. Gao, X. H. Chen, and J. G. Masek, "An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions," (in English), Remote Sensing of Environment, vol. 114, no. 11, pp. 2610-2623, Nov 15 2010. [DOI:10.1016/j.rse.2010.05.032]
29. [29] I. V. Emelyanova, T. R. McVicar, T. G. Van Niel, L. T. Li, and A. I. J. M. van Dijk, "Assessing the accuracy of blending Landsat-MODIS surface reflectances in two landscapes with contrasting spatial and temporal dynamics: A framework for algorithm selection," (in English), Remote Sensing of Environment, vol. 133, pp. 193-209, Jun 15 2013. [DOI:10.1016/j.rse.2013.02.007]
30. [30] J. C. Jimenez-Munoz, J. A. Sobrino, D. Skokovic, C. Mattar, and J. Cristobal, "Land Surface Temperature Retrieval Methods From Landsat-8 Thermal Infrared Sensor Data," (in English), Ieee Geoscience and Remote Sensing Letters, vol. 11, no. 10, pp. 1840-1843, Oct 2014. [DOI:10.1109/LGRS.2014.2312032]
31. [31] Q. Weng, P. Fu, and F. Gao, "Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data," Remote Sensing of Environment, vol. 145, pp. 55-67, 2014. [DOI:10.1016/j.rse.2014.02.003]
32. [32] K. Abutaleb, A. Ngie, A. Darwish, M. Ahmed, S. Arafat, and F. Ahmed, "Assessment of urban heat island using remotely sensed imagery over Greater Cairo, Egypt," Advances in Remote Sensing, vol. 4, no. 01, p. 35, 2015. [DOI:10.4236/ars.2015.41004]
33. [33] J. A. Sobrino, J. C. Jiménez-Mu-oz, and L. Paolini, "Land surface temperature retrieval from LANDSAT TM 5," Remote Sensing of environment, vol. 90, no. 4, pp. 434-440, 2004. [DOI:10.1016/j.rse.2004.02.003]
34. [34] J. A. Barsi, J. R. Schott, S. J. Hook, N. G. Raqueno, B. L. Markham, and R. G. Radocinski, "Landsat-8 thermal infrared sensor (TIRS) vicarious radiometric calibration," Remote Sensing, vol. 6, no. 11, pp. 11607-11626, 2014. [DOI:10.3390/rs61111607]
35. [35] J. C. Jiménez-Mu-oz, J. A. Sobrino, D. Skoković, C. Mattar, and J. Cristóbal, "Land surface temperature retrieval methods from Landsat-8 thermal infrared sensor data," IEEE Geoscience and Remote Sensing Letters, vol. 11, no. 10, pp. 1840-1843, 2014. [DOI:10.1109/LGRS.2014.2312032]
36. [36] X. Yu, X. Guo, and Z. Wu, "Land surface temperature retrieval from Landsat 8 TIRS—Comparison between radiative transfer equation-based method, split window algorithm and single channel method," Remote Sensing, vol. 6, no. 10, pp. 9829-9852, 2014. [DOI:10.3390/rs6109829]
37. [37] J. C. Jiménez‐Mu-oz and J. A. Sobrino, "A generalized single‐channel method for retrieving land surface temperature from remote sensing data," Journal of Geophysical Research: Atmospheres, vol. 108, no. D22, 2003.
38. [38] J. C. Jiménez-Mu-oz, J. Cristóbal, J. A. Sobrino, G. Sòria, M. Ninyerola, and X. Pons, "Revision of the single-channel algorithm for land surface temperature retrieval from Landsat thermal-infrared data," IEEE Transactions on Geoscience and Remote Sensing, vol. 47, no. 1, pp. 339-349, 2009. [DOI:10.1109/TGRS.2008.2007125]
39. [39] J. B. Adams, M. O. Smith, and P. E. Johnson, "Spectral Mixture Modeling - a New Analysis of Rock and Soil Types at the Viking Lander-1 Site," (in English), Journal of Geophysical Research-Solid Earth and Planets, vol. 91, no. B8, pp. 8098-8112, Jul 10 1986. [DOI:10.1029/JB091iB08p08098]
40. [40] D. A. Artis and W. H. Carnahan, "Survey of emissivity variability in thermography of urban areas," Remote Sensing of Environment, vol. 12, no. 4, pp. 313-329, 1982. [DOI:10.1016/0034-4257(82)90043-8]
41. [41] H. Shen, L. Huang, L. Zhang, P. Wu, and C. Zeng, "Long-term and fine-scale satellite monitoring of the urban heat island effect by the fusion of multi-temporal and multi-sensor remote sensed data: A 26-year case study of the city of Wuhan in China," Remote Sensing of Environment, vol. 172, pp. 109-125, 2016. [DOI:10.1016/j.rse.2015.11.005]
42. [42] S. Han, H. Li, and H. Gu, "The study on image fusion for high spatial resolution remote sensing images," Int Arch Photogram Rem Sens Spatial Inform Sci, vol. 37, pp. 1159-1163, 2008.
43. [43] S. Rajkumar and G. Malathi, "A Comparative Analysis on Image Quality Assessment for Real Time Satellite Images," Indian Journal of Science and Technology, vol. 9, no. 34, 2016. [DOI:10.17485/ijst/2016/v9i34/96766]
44. [44] H. Prashanth, H. Shashidhara, and B. M. KN, "Image scaling comparison using universal image quality index," in Advances in Computing, Control, & Telecommunication Technologies, 2009. ACT'09. International Conference on, 2009, pp. 859-863: IEEE.
45. [45] P. S. Pradhan, R. L. King, N. H. Younan, and D. W. Holcomb, "Estimation of the number of decomposition levels for a wavelet-based multiresolution multisensor image fusion," IEEE Transactions on Geoscience and Remote Sensing, vol. 44, no. 12, pp. 3674, 2006. [DOI:10.1109/TGRS.2006.881758]
ارسال پیام به نویسنده مسئول



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohammadizadeh P, Hamzeh S, Kiavarz M, Darvishi Blorani A. Derivation daily and high spatial resolution Land Surface Temperature using Fusion of Landsat and Modis Satellite Imagery. jgit 2018; 6 (1) :77-99
URL: http://jgit.kntu.ac.ir/article-1-564-fa.html

محمدی‌زاده پریسا، حمزه سعید، کیاورزمقدم مجید، درویشی بلورانی علی. استخراج تصاویر روزانه دمای سطح زمین با قدرت تفکیک مکانی بالا با استفاده از تلفیق تصاویر لندست و مادیس. مهندسی فناوری اطلاعات مکانی. 1397; 6 (1) :77-99

URL: http://jgit.kntu.ac.ir/article-1-564-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 6، شماره 1 - ( 3-1397 ) برگشت به فهرست نسخه ها
نشریه علمی-پژوهشی مهندسی فناوری اطلاعات مکانی Engineering Journal of Geospatial Information Technology
Persian site map - English site map - Created in 0.05 seconds with 38 queries by YEKTAWEB 4645