[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
:: دوره 7، شماره 4 - ( 12-1398 ) ::
جلد 7 شماره 4 صفحات 157-173 برگشت به فهرست نسخه ها
تخمین وسعت تخریب ناشی از زلزله با استفاده از تداخل سنجی راداری وتصاویر نوری (مطالعه موردی: زلزله1382 بم)
حمید مهرابی، سعید زعفرانیه
دانشگاه اصفهان
چکیده:   (255 مشاهده)
تخمین میزان تخریب ناشی از زلزله و دیگر بلایای طبیعی در روزهای اول پس از وقوع این حوادث می­تواند امکان برآورد سریع میزان خسارات وارده را فراهم کرده و کمک شایانی به مدیریت بحران نماید. برای بررسی میزان تخریب ناشی از زلزله چندین روش از جمله استفاده از تصاویر اپتیک سنجش از دور، روش‌های مختلف فتوگرامتری (پهپاد و لیدار)، تداخل‌سنجی راداری (InSAR) و بازدیدهای میدانی وجود دارد. داده­های راداری در تمام ساعات شبانه­روز و در تمام شرایط آب و هوایی، غالباً به­صورت رایگان و ارزان در اختیار کاربران قرار می­گیرد. امروزه فناوری تداخل‌سنجی راداری با قابلیت­ها و محصولات متعدد در حیطه فاز و دامنه به ابزاری قدرتمند در پایش تغییر شکل و تغییرات پوسته زمین تبدیل شده است. یکی از محصولات تداخل‌سنجی راداری تصویر همدوسی (Coherence image) می­باشد. عدم همدوسی در تصاویر راداری می‌تواند ناشی از عوامل متعدد از قبیل وجود پوشش گیاهی، تغییرات ضریب دی­الکتریک در تصاویر اصلی (Master image) و فرعی (Slave image)، شیب زیاد مناطق، فرسایش خاک ، تخریب عوارض و تغییر وضعیت زمین (مثلاً ساخت و ساز ) ­باشد. در این مقاله سعی شده است محدوده عدم همدوسی ناشی از تخریب با تمرکز بر تکنیک تداخل‌سنجی راداری تفاضلی (D-InSAR) و حذف سلول­هایی که به دلیل پوشش گیاهی، تغییرات ضریب دی­الکتریک و مناطق پر شیب کوهستانی همدوسی خود را از دست داده­اند، برآورد شود. در این راستا، زوج تصاویر ماهواره انویست  (Envisat)قبل و بعد از زلزله 1382 بم به عنوان تصاویر منطقه مطالعاتی مورد بررسی قرار گرفت. همدوسی سلول­های با مقدار متوسط 2/0 در محدوده ارگ بم با میزان تخریب بالای آن موید قابلیت استفاده از این معیار در میزان تخریب می­باشد. نتایج بررسی زلزله بم نشان می­دهد که 5/23% از مساحت 14290 هکتاری منطقه مطالعاتی دچار تخریب کامل (فرو ریزش) و 31% دچار تخریب بالا شده است.
واژه‌های کلیدی: تداخل سنجی راداری (InSAR)، همدوسی، میزان تخریب، D-InSAR
متن کامل [PDF 1498 kb]   (66 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: سنجش از دور
دریافت: 1398/3/25 | پذیرش: 1398/8/11 | انتشار: 1398/12/29
فهرست منابع
1. [1] Erol, S., B. Erol and T. Ayan. A general review of the deformation monitoring techniques and a case study: analysing deformations using GPS/levelling. in XXth ISPRS Congress. 2004. Citeseer.
2. [2] Hanssen, R.F., Satellite radar interferometry for deformation monitoring: a priori assessment of feasibility and accuracy. International Journal of Applied Earth Observation and Geoinformation(4-3)6.2005: p. 253-260.
3. [3] Fatemi Nasrabadi, S.B., Questions of Concern in Drawing Up a Remote Sensing Change Detection Plan. Journal of the Indian Society of Remote Sensing: p. 1-15.
4. [4] Tong, X., Z. Hong, S. Liu, X. Zhang, H. Xie, Z. Li, . . . F. Bao, Building-damage detection using pre-and post-seismic high-resolution satellite stereo imagery: A case study of the May 2008 Wenchuan earthquake. ISPRS Journal of Photogrammetry and Remote Sensing, 2012. 68: p. 13-27.
5. [5] Samadzadegan, F., M.J.V. Zoj and M.K. Moghaddam, Fusion Of Gis Data And High-Resolution Satellite Imagery For Post-Earthquake Building Damage Assessment. 2010.
6. [6] Maruyama, Y., A. Tashiro and F. Yamazaki, Use of digital surface model constructed from digital aerial images to detect collapsed buildings during earthquake. Procedia engineering, 2011. 14: p. 552-558.
7. [7] Rastiveis, H., F. Samadzadegan and P. Reinartz, A fuzzy decision making system for building damage map creation using high resolution satellite imagery. Natural Hazards and Earth System Sciences, 2013. 13(2): p. 455.
8. [8] Guo, H., L. Liu, L. Lei, Y. Wu, L. Li, B. Zhang, . . . Z. Li, Dynamic analysis of the Wenchuan Earthquake disaster and reconstruction with 3-year remote sensing data. International Journal of Digital Earth, 2010. 3(4): p. 355-364.
9. [9] Turker, M. and B. Cetinkaya, Automatic detection of earthquake‐damaged buildings using DEMs created from pre‐and post‐earthquake stereo aerial photographs. International Journal of Remote Sensing, 2005. 26(4): p. 823-832.
10. [10] Woolard, J.W. and J.D. Colby, Spatial characterization, resolution, and volumetric change of coastal dunes using airborne LIDAR: Cape Hatteras, North Carolina. Geomorphology, 2002. 48(1-3): p. 269-287.
11. [11] Rastiveis, H., F. Eslamizade and E. Hosseini-Zirdoo, BUILDING DAMAGE ASSESSMENT AFTER EARTHQUAKE USING POST-EVENT LiDAR DATA. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 2015. 40.
12. [12] Rehor, M., H.P. Bähr, F. Tarsha‐Kurdi, T. Landes and P. Grussenmeyer, Contribution of two plane detection algorithms to recognition of intact and damaged buildings in lidar data. The Photogrammetric Record, 2008. 23(124): p. 441-456.
13. [13] Li, M., L. Cheng, J. Gong, Y. Liu, Z. Chen, F. Li, . . . X. Song, Post-earthquake assessment of building damage degree using LiDAR data and imagery. Science in China Series E: Technological Sciences, (2)51.2008 p. 133-143.
14. [14] Trinder, J. and M. Salah, Aerial images and LiDAR data fusion for disaster change detection. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci, 2012. 1: p. 227-232.
15. [15] Tian, J., A.A. Nielsen and P. Reinartz, Building damage assessment after the earthquake in Haiti using two post-event satellite stereo imagery and DSMs. International Journal of Image and Data Fusion, 2015. 6(2): p. 155-169.
16. [16] Shi, J., J. Wang and Y. Xu, Object-based change detection using georeferenced UAV images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci, 2011. 38: p. 177-182.
17. [17] Adams, B.J., C.K. Huyck, B. Mansouri, R.T. Eguchi and M.J.M.R. Shinozuka, Application of high-resolution optical satellite imagery for post-earthquake damage assessment: The 2003 boumerdes (algeria) and bam (iran) earthquakes. MCEER Research Accomplishments 2004: p. 173-186.
18. [18] Arciniegas, G.A., W. Bijker, N. Kerle and V.A. Tolpekin, Coherence-and amplitude-based analysis of seismogenic damage in Bam, Iran, using ENVISAT ASAR data. IEEE Transactions on Geoscience and Remote Sensing, 2007. 45(6): p. 1571-1581.
19. [19] Massonnet, D., M. Rossi, C. Carmona, F. Adragna, G. Peltzer, K. Feigl and T. Rabaute, The displacement field of the Landers earthquake mapped by radar interferometry. Nature, 1993. 364(6433): p. 138.
20. [20] Gabriel, A., R. Goldstein and H. Zebker, Mapping small evaluation changes over large areas: Differential radar interferometry. Journal of Geophysical Research, 1989. 94(B7).
21. [21] Zebker, H.A. and R.M. Goldstein, Topographic mapping from interferometric synthetic aperture radar observations. Journal of Geophysical Research: Solid Earth, 1986. 91(B5): p. 4993-4999.
22. [22] Lanari, R., P. Lundgren and E. Sansosti, Dynamic deformation of Etna volcano observed by satellite radar interferometry. Geophys Res Lett, 1998. 25: p. 1541-1544.
23. [23] Amelung, F., S. Jónsson, H. Zebker and P. Segall, Widespread uplift and 'trapdoor'faulting on Galapagos volcanoes observed with radar interferometry. Nature, 2000. 407(6807) p. 993-996.
24. [24] Pritchard, M.E. and M. Simons, A satellite geodetic survey of large scaledeformation of volcanic centers in the central andes. Nature, 2002. 418(6894): p. 167-171.
25. [25] Motagh, M., J. Hoffmann, B. Kampes, M. Baes and J. Zschau, Strain accumulation across the Gazikoy-Saros segment of the North Anatolian Fault inferred from Persistent Scatterer Interferometry and GPS measurements. Earth Planet. Sci. Lett, 2007.
26. [26] Motagh, M., R. Wang, T. Walter, R. Burgmann, E. Fielding and J. Anderssohn, Coseismic slip model of the 2007 August Pisco earthquake (Peru) as constrained byWide Swath radar observations. Geophys. J. Int, 2008: p. 842-848.
27. [27] Pollitz, F.F., C. Wicks and W. Thatcher, Mantle flow beneath a continental strike-slip fault: postseismic deformation after the 1999 hector mine earthquake. Science, 2001. 293(5536): p. 1814-1818.
28. [28] Jacobs, A., D. Sandwell, Y. Fialko and L. Sichiox, The 1999 (Mw 7.1) hector mine, california, earthquake: near-field postseismic deformation from ERS interferometry. Bull. Seism. Soc. Am., 2002. 92(4): p. 1433-1442.
29. [29] Hu, J., Z.-W. Li, Q. Sun, J.-J. Zhu and X.-L. Ding, Three-dimensional surface displacements from InSAR and GPS measurements with variance component estimation. IEEE Geoscience and Remote Sensing Letters, 2012. 9(4): p. 754-758.
30. [30] Amelung, F., D.L. Galloway, J.W. Bell, H.A. Zebker and R.J. Laczniak, Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer system deformation. Geology, 1999. 2(6)7 p. 483-486. https://doi.org/10.1130/0091-7613(1999)027<0483:STUADO>2.3.CO;2 [DOI:10.1130/0091-7613(1999)0272.3.CO;2]
31. [31] Burgmann, R., P.A. Rosen and E.J. Fielding, Synthetic aperture radar interferometry to measure Earth's surface topography and its deformation. Annual review of earth and planetary sciences, 2000. 28(1): p. 169-209.
32. [32] Ryder, I. and R. Burgmann, Spatial variations in slip deficit on the central San Andreas fault from InSAR. Geophysical Journal Intl., 2008. 175(3): p. 837-852.
33. [33] Amighpey, M., B. Voosoghi and M. Dhghani, Earth surface deformation analysis of 2005 Qeshm earthquake based on three-dimensional displacement field derived from radar imagery measurements. International Journal of Applied Earth Observation and Geoinformation, 2009. 11: p. 156-166.
34. [34] Turker, M. and B. Cetinkaya, Automatic detection of earthquake‐damaged buildings using DEMs created from pre‐ and post‐earthquake stereo aerial photographs. International Journal of Remote Sensing, 2005. 26(4): p. 823-832.
35. [35] Ferretti, A., C. Prati and F. Rocca, Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 2001. 39(1): p. 8-20.
36. [36] Usai, S. and R. Klees, SAR interferometry on a very long time scale: a study of the interferometric characteristics of man-made features. IEEE Transactions on Geoscience and Remote Sensing, 19(4) 37.99 p. 2118-2123.
37. [37] Weydahl, D., Analysis of ERS SAR coherence images acquired over vegetated areas and urban features. International Journal of Remote Sensing, 2001. 22(14): p. 2811-2830.
38. [38] Matsuoka, M. and F. Yamazaki, Use of interferometric satellite SAR for earthquake damage detection. Sat 2, 2000: p. z1.
39. [39] Suga, Y., S. Takeuchi, Y. Oguro, A. Chen, M. Ogawa, T. Konishi and C. Yonezawa, Application of ERS-2/SAR data for the 1999 Taiwan earthquake. Advances in Space Research, 2001. 28(1)p. 155-163.
40. [40] Yonezawa, C. and S. Takeuchi, Decorrelation of SAR data by urban damages caused by the 1995 Hyogoken-nanbu earthquake. International Journal of Remote Sensing, 2001. 22(8): p. 1585-1600.
41. [41] Bignami, C., M. Chini, N. Pierdicca and S. Stramondo. Comparing and combining the capability of detecting earthquake damages in urban areas using SAR and optical data. in IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium. 2004. IEEE.
42. [42] Fielding, E.J., M. Talebian, P.A. Rosen, H. Nazari, J.A. Jackson, M. Ghorashi and R. Walker, Surface ruptures and building damage of the 2003 Bam, Iran, earthquake mapped by satellite synthetic aperture radar interferometric correlation. Journal of Geophysical Research: Solid Earth, 2005. 110(B3).
43. [43] Mansouri, B., M. Shinozuka, C. Huyck and B. Houshmand, Earthquake-induced change detection in the 2003 Bam, Iran, earthquake by complex analysis using Envisat ASAR data. Earthquake Spectra, 2005. 21(S1): p. 275-284.
44. [44] Wang, T., M. Liao and D. Perissin, InSAR coherence-decomposition analysis. IEEE Geoscience and Remote Sensing Letters, 2010. 7(1): p. 156-160.
45. [45] Jung, J., D.-j. Kim, S.-h. Yun and M. Lavalle. Damage mapping based on coherence model using multi-temporal polarimetric-interferometric UAVSAR data. in 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). 2017. IEEE.
46. [46] Hanssen, R.F., Radar interferometry: data interpretation and error analysis. Vol. 2. 2001: Springer Science & Business Media.
47. [47] Zebker, H.A. and J. Villasenor, Decorrelation in interferometric radar echoes. IEEE Transactions on geoscience and remote sensing, 1992. 30(5): p. 950-959.
48. [48] Hoffmann, J., A. Roth and S. Voigt. Interferometric displacement and damage assessment for the 2003 Bam earthquake. in Envisat & ERS Symposium. 2005.
49. [49] Berberian, M. and R.S. Yeats, Patterns of historical earthquake rupture in the Iranian Plateau. Bulletin of the Seismological society of America, 1999. 89(1): p. 120-139.
50. [50] Fu, B., Y. Ninomiya, X. Lei, S. Toda and Y. Awata, Mapping active fault associated with the 2003 Mw 6.6 Bam (SE Iran) earthquake with ASTER 3D images. Remote Sensing of Environment, 2004. 92(2): p. 153-157.
51. [51] Stramondo, S., M. Moro, C. Tolomei, F. Cinti and F. Doumaz, InSAR surface displacement field and fault modelling for the 2003 Bam earthquake (southeastern Iran). Journal of Geodynamics, 2005. 40(2-3): p. 347-353.
52. [52] Adams, B.J., C.K. Huyck, M. Mio, C. Sungbin, S. Ghosh, H.C. Chung, . . . B. Mansouri, The Bam (Iran) Earthquake of December 26, 2003: Preliminary Reconnaissance Using Remotely Sensed Data and the VIEWS (Visualizing the Impacts of Earthquakes with Satellite Images) System. 2004: MCEER.
53. [53] Yamazaki, F., Y. Yano and M. Matsuoka, Visual damage interpretation of buildings in bam city using quickbird images following the 2003 bam, iran, earthquake. Earthquake Spectra, 2005. 21(S1): p. 329-336.
54. [54] Kalantari, A., B. Hosseini, B. Mansouri, A. Sarvghad moghaddam, M. Bastami and H. Farshchi, Quick assessment forms for damaged buildings after the earthquake. 2017, International Institude of Earthquake Engineering and seismology.
55. [55] Mostafaei, H. and T. Kabeyasawa, Investigation and analysis of damage to buildings during the 2003 Bam earthquake. Bulletin of Earthquake Research Institute, University of Tokyo, 2004. 79: p. 107-132.


XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mehrabi H, Zaferanieh S. Estimation of Earthquake Damage Through Radar Interferometry (Case study: Bam 2003 Earthquake). jgit. 2020; 7 (4) :157-173
URL: http://jgit.kntu.ac.ir/article-1-768-fa.html

مهرابی حمید، زعفرانیه سعید. تخمین وسعت تخریب ناشی از زلزله با استفاده از تداخل سنجی راداری وتصاویر نوری (مطالعه موردی: زلزله1382 بم). مهندسی فناوری اطلاعات مکانی. 1398; 7 (4) :157-173

URL: http://jgit.kntu.ac.ir/article-1-768-fa.html



دوره 7، شماره 4 - ( 12-1398 ) برگشت به فهرست نسخه ها
نشریه علمی-پژوهشی مهندسی فناوری اطلاعات مکانی Engineering Journal of Geospatial Information Technology
Persian site map - English site map - Created in 0.05 seconds with 31 queries by YEKTAWEB 4212